Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
        • Predictive Phenomics
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Global Change
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Solid Phase Processing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Flavor Physics
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Energy Resiliency
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Wind Resource Characterization
          • Wildlife and Wind
          • Community Values and Ocean Co-Use
          • Wind Systems Integration
          • Wind Data Management
          • Distributed Wind
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Internet of Things
        • Maritime Security
        • Millimeter Wave
        • Mission Risk and Resilience
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • Future Computing Technologies
        • Adaptive Autonomous Systems
      • Visual Analytics
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Education
      • Undergraduate Students
      • Graduate Students
      • Post-graduate Students
      • University Faculty
      • University Partnerships
      • K-12 Educators and Students
      • STEM Education
        • STEM Workforce Development
        • STEM Outreach
        • Meet the Team
      • Internships
    • Community
      • Regional Impact
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
      • Visual Intellectual Property Search (VIPS)
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Portland Research Center
      • PNNL Seattle Research Center
      • PNNL-Sequim (Marine and Coastal Research)
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Ocean Dynamics & Modeling

  • Marine Renewable Energy
    • Tidal Energy
    • Wave Energy
    • Offshore Wind Energy
    • Sea-Ice Effects
  • Coastal Hazards
    • Storm Surge
    • Sea Level Rise
    • Tsunami Modeling
  • Marine Ecosystems
    • Macroalgae
    • Water Quality
  • News & Publications
  • About Us
  • Resources

Breadcrumb

  1. Home
  2. Projects
  3. Ocean Dynamics & Modeling

News & Publications

News

September 28, 2021
Zhaoqing Yang Invited as Lead Guest Editor for a Special Issue of Renewable Energy
December 21, 2020
Researchers Identify Which West Coast Regions Hold Greatest Wave Energy Potential
July 14, 2020
Turning the Tides
July 8, 2020
Yang Leads Special Journal Issue on Marine Energy

Presentations

Zhaoqing Yang presents a IIWER webinar on Wave Resource Characterization at Regional & Nearshore Scales Using a Multi-Resolution Modeling Approach.

Journal Publications

  1. Neill, S., K. Haas, J. Thiebot and Z. Yang, 2021. A review of tidal energy - resource, feedbacks, and environmental interactions. Journal of Renewable and Sustainable Energy.  https://doi.org/10.1063/5.0069452
  2. Xiao, Z., Z. Yang, T. Wang, N. Sun, M. Wigmosta and D. Judi, 2021. Characterizing the nonlinear interactions between tide, storm surge, and river flow in the Delaware Bay Estuary, USA. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2021.715557
  3. Branch, R.; García-Medina, G.; Yang, Z.; Wang, T.; Ticona Rollano, F.; Hosekova, L. Modeling Sea Ice Effects for Wave Energy Resource Assessments. Energies 2021, 14, 3482. https://doi.org/10.3390/en14123482
  4. Li, N., G. Garcia-Medina, K.F. Cheung and Z. Yang, 2021. Wave energy resources assessment for the multi-modal sea state of Hawaii. Renewable Energy. 174 1036 – 1055. https://doi.org/10.1016/j.renene.2021.03.116
  5. Yang, Z., T. Wang, R. Branch, Z. Xiao, and M. Deb, 2021. Tidal Stream Energy Resource Characterization in the Salish Sea. Renewable Energy. 172, 188-208. https://doi.org/10.1016/j.renene.2021.03.028
  6. Gabriel García-Medina, Z. Yang, Wei-Cheng Wu, Taiping Wang. 2021. Wave resource characterization at regional and nearshore scales for the U.S. Alaska coast based on a 32-year high-resolution hindcast. 170. 595-612. https://doi.org/10.1016/j.renene.2021.02.005
  7. Bryson Robertson, Gabrielle Dunkle, Jonah Gadasi, Gabriel Garcia-Medina, Z. Yang. 2021 Holistic marine energy resource assessments: A wave and offshore wind perspective of metocean conditions. Renewable Energy, 170, 286-301. https://doi.org/10.1016/j.renene.2021.01.136
  8. Whiting, J.M.; Wang, T.; Yang, Z.; Huesemann, M.H.; Wolfram, P.J.; Mumford, T.F.; Righi, D. 2020. Simulating the Trajectory and Biomass Growth of Free-Floating Macroalgal Cultivation Platforms along the U.S. West Coast. J. Mar. Sci. Eng. 8, 938. https://doi.org/10.3390/jmse8110938
  9. Yang, Z. and V. S. Neary, 2020. High-resolution hindcasts for U.S. wave energy resource characterization. International Marine Energy Journal. 3(2), 65-71. https://doi.org/10.36688/imej.3.65-71
  10. Yang, Z., G. García-Medina, W. Wu, and T. Wang, 2020. Characteristics and variability of the Nearshore Wave Resource on the U.S. West Coast. Energy. https://doi.org/10.1016/j.energy.2020.117818
  11. Yang, Z., T. Wang, Z. Xiao, L. Kilcher, K. Haas, H. Xue and X. Feng, 2020. Modeling Assessment of Tidal Energy Extraction in Western Passage. J. Mar. Sci. Eng. 2020, 8(6), 411; https://doi.org/10.3390/jmse8060411.
  12. Preziuso, D., G. García-Medina, R. O’Neil, Z. Yang and T. Wang, 2020. Evaluating the Potential for Tidal Phase Diversity to Produce Smoother Power Profiles. J. Mar. Sci. Eng. 2020, 8(4), 246; https://doi.org/10.3390/jmse8040246
  13. Wang, T. and Z. Yang, 2020. A Tidal Hydrodynamic Model for Cook Inlet, Alaska, to Support Tidal Energy Resource Characterization. J. Mar. Sci. Eng. 2020, 8(4), 254; https://doi.org/10.3390/jmse8040254
  14. Ticona Rollano, F., T.T. Tran ,Y.H., Yu ,G. García-Medina, and Z. Yang, 2020. Influence of Time and Frequency Domain Wave Forcing on the Power Estimation of a Wave Energy Converter Array, J. Mar. Sci. Eng. 2020, 8(3), 171; https://doi.org/10.3390/jmse8030171
  15. Neary, V.S., S. Ahn, B.E. Seng, M.N. Allahdadi, T. Wang, Z. Yang and R. He, 2020. Characterization of Extreme Wave Conditions for Wave Energy Converter Design and Project Risk Assessment. J. Mar. Sci. Eng. 2020, 8(4), 289; https://doi.org/10.3390/jmse8040289
  16. Yang, Z, T. Wang, L. Castrucci, and I. Miller, 2020: Modeling assessment of storm surge in the Salish Sea, Estuarine, Coastal and Shelf Science. 238, https://doi.org/10.1016/j.ecss.2019.106552
  17. Wu, W-C., T. Wang, Z. Yang, G. García-Medina, 2020. Development and validation of a high-resolution regional wave hindcast model for U.S. West Coast wave resource characterization. Renewable Energy, 152, 736-753, https://doi.org/10.1016/j.renene.2020.01.077
  18. Yang, Z, G. García-Medina, WC. Wu, T. Wang, R. Leung, L. Castrucci, and G. Mauger, 2019: Modeling analysis of the swell and wind-sea climate in the Salish Sea. Estuarine, Coastal and Shelf Science. 224, 289-300; https://doi.org/10.1016/j.ecss.2019.04.043
  19. Wang, T. and Z. Yang, 2019: The Nonlinear Response of Storm Surge to Sea-Level Rise: A Modeling Approach. Journal of Coastal Research. 35(2), 287–294, DOI: 10.2112/JCOASTRES-D-18-00029.1
  20. Wang, T., Z. Yang, W-C. Wu and M. Grear, 2018: A Sensitivity Analysis of the Wind Forcing Effect on the Accuracy of Large-Wave Hindcasting. J. Mar. Sci. Eng. 2018, 6(4), 139; https://doi.org/10.3390/jmse6040139
  21. Wu, W., Z. Yang, T. Bo, Y. Huang, Y. Zhou and T. Zhang, 2018. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management, Estuarine, Coastal and Shelf Science, 210, 153-161; https://doi.org/10.1016/j.ecss.2018.06.013
  22. Wu, W-C., Z. Yang and T. Wang, 2018. Wave Resource Characterization Using an Unstructured Grid Modeling Approach. Energies, 11(3), 605; https://doi.org/10.3390/en11030605
  23. Yang, Z. and A. Copping, eds. 2017. Marine Renewable Energy – Resource Characterization and Physical Effects. Springer International Publishing, 387 pp. DOI:10.1007/978-3-319-53536-4
  24. Yang, Z. and T. Wang, 2017. Assessment of Tidal Stream Energy Effect on Transport Time Scale. In “Marine Renewable Energy – Resource Characterization and Physical Effects.” Yang, Z. and A. Copping (eds.), 259-278. DOI:10.1007/987-3-319-53536-4_11
  25. Neill, S. Z. Yang and R. Hashemi, 2017. Special issue: Wave and tidal resource characterization, Renewable Energy, 114, 1-2. https://doi.org/10.1016/j.renene.2017.07.054
  26. Wang, T. and Z. Yang, 2017. A modeling study of tidal energy extraction and the associated impact on tidal circulation in a multi-inlet bay system of Puget Sound, Renewable Energy, 114, pp. 204-214. http://dx.doi.org/10.1016/j.renene.2017.03.049
  27. Yang, Z., V. Neary, T. Wang, B. Gunawan, A. R. Dallman and W.C. Wu, 2017. Wave resource modeling test bed study. Renewable Energy, 114, pp. 132-144. http://dx.doi.org/10.1016/j.renene.2016.12.057
  28. Yang, Z., S. Taraphdar, T. Wang and L.R. Leung, 2016. Uncertainty and feasibility of dynamical downscaling for modeling tropical cyclones for storm surge simulation, Natural Hazards, 84(2), 1161-1184. DOI: 10.1007/s11069-016-2482-y
  29. Long W., K.W. Jung, Z. Yang, A.E. Copping, and Z. Deng. 2016. Coupled Modeling of Hydrodynamics and Sound in Coastal Ocean for Renewable Ocean Energy Development. Marine Technology Society Journal 50(2):27-36.  DOI:10.4031/MTSJ.50.2.6
  30. Tian, B., W. Wu, Z. Yang, Y. Zhou. 2016. Drivers, trends, and potential impacts of long-term coastal reclamation in China from 1985 to 2010. Estuarine, Coastal and Shelf Sciences. 170, 83-90. DOI:10.1016/j.ecss.2016.01.006.
  31. Xuan, J., Z. Yang, D. Huang, T. Wang, F. Zhou. 2016. Tidal residual current and its role in the mean flow on the Changjiang Bank. Journal of Marine Systems. 154 (Part A):66-81. DOI:10.1016/j.jmarsys.2015.04.005.
  32. Yang, Z. and T. Wang, 2015. Responses of estuarine circulation and salinity to the loss of intertidal flats – A modeling study, Continental Shelf Research. 111, 159-173. DOI:10.1016/j.csr.2015.08.011
  33. Wang, T. and Z. Yang. 2015. Understanding the flushing capability of Bellingham Bay and its implication on bottom water hypoxia. Estuarine, Coastal and Shelf Sciences. 165, 279-290. DOI:10.1016/j.ecss.2015.04.010.
  34. Yang, Z. and T. Wang. 2015. Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts. 38 (1), 187-202. DOI: 10.1007/s12237-013-9684-2.
  35. Wang, T., Z. Yang, and A. Copping. 2015. A modeling study of the potential water quality impacts from in-stream tidal energy extraction. Estuaries and Coast. 38 (1), 173-186. DOI:10.1007/s12237-013-9718-9.
  36. Yang, Z., T. Wang, N. Voisin and A. Copping, 2015.  Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development, Estuarine, Coastal and Shelf Sciences. 156, 19-30. DOI: 10.1016/j.ecss.2014.08.015
  37. Li, Y., JH. Yi, H. Song, Q. Wang, Z. Yang, N. D. Kelley, and KS. Lee, 2014.  On Natural Frequency of Tidal Power Systems-A Discussion on Sea Test. Applied Physics Letters, 105 (2), 023902. DOI: 10.1063/1.4886797.
  38. Yang, Z., T. Wang, A. Copping and S. Geerlofs, 2014.  Modeling of in-stream Tidal Energy Development and its Potential Effects in Tacoma Narrows, Washington, USA. Journal of Ocean and Coastal Management. 99, 52-62.  DOI: 10.1016/j.ocecoaman.2014.02.010
  39. Yang, Z., T. Wang, D. Cline and B. Williams. 2014. Hydrodynamic Modeling Analysis to Support Nearshore Restoration Projects in a Changing Climate, J. Mar. Sci. Eng., 2(1), 18-32. DOI:10.3390/jmse2010018
  40. Yang, Z., T. Wang, L-YR, Leung, K.A. Hibbard, A.C. Janetos, I.P. Kraucunas, J.S. Rice, B. Preston, and T. Wilbanks. 2014. A modeling study of coastal inundation induced by storm surge, sea level rise and subsidence in the Gulf of Mexico. Natural Hazards, 71, 1771-1794, DOI: 10.1007/s11069-013-0974-6
  41. Yang, Z. and T. Wang, 2013. Tidal Residual Eddies and Their Effect on Water Exchange in Puget Sound. Ocean Dynamics, 63, 995-1009. DOI: 10.1007/s10236-013-0635-z
  42. Yang, Z., T. Wang and A. Copping, 2013.  Modeling Tidal Stream Energy Extraction and its Effects on Transport Processes in a Tidal Channel and Bay System Using a Three-dimensional Coastal Ocean Model. Renewable Energy, 50, 605-613. DOI: 10.1016/j.renene.2012.07.024
  43. Yang, Z., T. Wang, T. Khangaonkar and S. Breithaupt, 2012.  Integrated Modeling of Flood Flows and Tidal Hydrodynamics over a Coastal Floodplain. Journal of Environmental Fluid Mechanics. 12, 63-80. DOI: 10.1007/s10652-011-9214-3
  44. Khangaonkar, T., Z. Yang, T. Kim and M. Robert, 2011.  Tidally Averaged Circulation in Puget Sound Sub-basins: Comparison of Historical Data, Analytical Model, and Numerical Model. Estuarine, Coastal and Shelf Science, 93, 305-319.
  45. Yang, Z. T. Khangaonkar and T. Wang, 2011.  Use of Advanced Meteorological Model Output for Coastal Ocean Modeling in Puget Sound. International Journal of Ocean and Climate Systems, vol. 2, no. 2, 101-117.
  46. Khangaonkar, T.  and Z. Yang, 2011.  A High Resolution Hydrodynamic Model of Puget Sound to Support Nearshore Restoration Feasibility Analysis and Design. Journal of Ecological Restoration, 29 (1-2):173-184.  DOI:10.3368/er.29.1-2.173.
  47. Yang, Z. and T. Khangaonkar, 2010.  Multi-scale Modeling of Puget Sound Using an Unstructured-grid Coastal Ocean Model: from Tide flats to Estuaries and Coastal Waters. Ocean Dynamics. 60, 1621-1637, DOI: 10.1007/s10236-010-0348-5
  48. Yang, Z., K.L. Sobocinski, D. Heatwole, T. Khangaonkar, R. Thom, and R. Fuller, 2010. Hydrodynamic and Ecological Assessment of Nearshore Restoration: A Modeling Study. Ecol. Model. 221, 1043-1053. DOI:10.1016/j.ecolmodel.2009.07.011
  49. Yang, Z., T. Khangaonkar, M. Calvi, K. Nelson, 2010. Simulation of Cumulative Effects of Nearshore Restoration Projects on Estuarine Hydrodynamics. Ecol. Model. 221, 969-977. DOI: 10.1016/j.ecolmodel.2008.12.006
  50. Yang, Z., and T. Khangaonkar, 2009. Modeling Tidal Circulation and Stratification in Skagit River Estuary Using an Unstructured Grid Ocean Model. Ocean Modelling, 28, 34-49. DOI: 10.1016/j.ocemod.2008.07.004.

Technical Reports:

  1. Wang, T., Duan, Z., Yang, Z., Sun, N., and Wigmosta, M., 2022. Modeling the Fate and Transport of Plastics from the Watershed to the Coastal Ocean. PNNL Technical Report, PNNL-32751. Pacific Northwest National Laboratory, Richland, WA.
  2. Branch, R.A., Z. Yang, , B. Maurer, L. Miller, and L. Garavelli, 2022. Riverine Plastic Pollution: Sampling and Analysis Methods.  PNNL Technical Report, PNNL-32657. Pacific Northwest National Laboratory, Richland, WA.
  3. Dunkle, G., B. Robertson,  G. García-Medina,  Z. Yang, 2020. Pacwave Wave Resource Assessment. PMEC Report, Corvallis, OR.
  4. Yang, Z., T. Wang, R. Branch, and Z. Xiao, 2020. Validation of the High-Resolution Salish Sea Tidal Hydrodynamic Model. PNNL Technical Report, PNNL-30448. Pacific Northwest National Laboratory, Richland, WA.
  5. Yang Z., A.M. Gorton, T. Wang, J.M. Whiting, A.E. Copping, K. Haas, and P.J. Wolfram, et al. 2020. Multi-resolution, Multi-scale Modeling for Scalable Macroalgae Production. PNNL-29881. Richland, WA: Pacific Northwest National Laboratory. Multi-resolution, Multi-scale Modeling for Scalable Macroalgae Production
  6. Yang, Z., R. Branch, G. Garcia-Medina and T. Wang, 2020. Sea-Ice Effects on the Alaskan Wave Climate. PNNL Technical Report, PNNL-30235. Pacific Northwest National Laboratory, Richland, WA.
  7. Garcia-Medina, G., Yang, Z., N. Li, K.F. Cheung, T. Wang and W.C. Wu, 2019. High-Resolution Regional Wave Hindcast for Hawaii. PNNL Technical Report, PNNL-29370. Pacific Northwest National Laboratory, Richland, WA.
  8. Garcia Medina, Gabriel, Shaw, William J., Yang, Zhaoqing, and Newsom, Rob K. Mid-Atlantic Bight Wave Hindcast To Support DOE Lidar Buoy Deployments: Model Validation. United States: N. p., 2020. Web. doi:10.2172/1635751.
  9. Yang, Z., T. Wang, and L. Castrucci, 2019. Storm surge modeling in Puget Sound. PNNL Technical Report, PNNL-28685. Pacific Northwest National Laboratory, Richland, WA.
  10. Yang, Z., W-C. Wu, T. Wang, G. Garcia-Medina and L. Castrucci, 2019. High Resolution Regional Wave Hindcast for the U.S. Alaska Coast. PNNL Technical Report, PNNL-29479. Pacific Northwest National Laboratory, Richland, WA.
  11. Yang, Z., W-C. Wu, T. Wang, and L. Castrucci, 2018. High Resolution Regional Wave Hindcast for the U.S. West Coast. PNNL Technical Report, PNNL-28107. Pacific Northwest National Laboratory, Richland, WA.
  12. Yang, Z., W-C. Wu and T. Wang, 2017. Model Test Bed for Evaluating Unstructured-Grid Wave Models for Resource Assessment and Characterization. PNNL- 27006. Pacific Northwest National Laboratory, Richland, WA
  13. Neary, V.S., Yang, Z., Wang, T., Gunawan, B., and Dallman, A.R. 2016. Model test bed for evaluating wave models and best practices for resource assessment and characterization. PNNL- 25385 / SAND2016-8497 R, Sandia National Laboratories and Pacific Northwest National Laboratory, March 2016. 95 pages.
  14. Moss, Richard H; Mearns, Linda; Blohm, Andrew J; Henriques, Justin Joseph; Malone, Elizabeth L; McCrary, Rachel; Rice, Jennie S; Wang, Taiping; Yang, Zhaoqing. 2014. Installation Briefing Document: United States Naval Academy Climate Change Vulnerability Assessment.  PNWD-4433—Pacific Northwest Division, Richland, WA. 
  15. Khangaonkar T, Z Yang, C Lee, T Wang, and W Long.  2014.  Hydrodynamic and Suspended Sediment Transport Model of Skagit and Padilla Bay System .  PNNL-23143, Pacific Northwest National Laboratory, Richland, WA
  16. Copping AE, Z Yang, N Voisin, J Richey, T Wang, RY Taira, M Constans, MS Wigmosta, FB Van Cleve, and TK Tesfa.  2013.  Integrated Modeling and Decision-Support System for Water Management in the Puget Sound Basin: Snow Caps to White Caps .  PNNL-23078, Pacific Northwest National Laboratory, Richland, WA.
  17. Yang Z, and T Wang.  2013.  Hydrodynamic Modeling Analysis for the Fir Island Farm Estuary Restoration Project in Skagit Bay, Washington .  PNWD-4398, Battelle—Pacific Northwest Division, Richland, WA. 
  18. Yang Z and T. Wang. 2013. Hydrodynamic Modeling Analysis of Fir Island Farm Restoration (Phase II) – Model Output.  PNWD-SA-10178 Battelle—Pacific Northwest Division, Richland, WA. 
  19. Breithaupt SA, Z Yang, and T Wang.  2011.  Hydrodynamic Modeling Analysis of Fir Island Farm Restoration - Preferred Alternative .  PNWD-4306, Battelle—Pacific Northwest Division, Richland, WA. 
  20. Yang Z and T. Wang. 2011. Hydrodynamic Modeling Analysis of Fir Island Farm Restoration – Baseline Condition .  PNWD-SA-9379 Battelle—Pacific Northwest Division, Richland, WA. 
  21. Yang Z, LK Berg, JC States, and AE Copping.  2011.  Improved Assessment Tool for Offshore Wind Resource Characterization .  PNNL-20795, Pacific Northwest National Laboratory, Richland, WA. 
  22. Yang Z and T. Wang. 2011. Assessment of Tidal Energy Removal Impacts on Physical Systems: Development of MHK Module and Analysis of Effects on Hydrodynamics. PNNL-20804, Pacific Northwest National Laboratory, Richland, WA. 
  23. Khangaonkar T., T. Kim, Z. Yang, and R. Labiosa. 2011. Puget Sound Dissolved Oxygen Modeling Study: Water Quality Development – Phase I. PNNL-20384, Pacific Northwest National Laboratory, Richland, WA. 
  24. Yang Z, and T. Wang. 2010. Modeling Analysis of Union Slough Restoration Project. PNNL-20076, Pacific Northwest National Laboratory, Richland, WA. 
  25. Wang T., Z. Yang, and T. Khangaonkar. 2010. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration. PNNL-19347, Pacific Northwest National Laboratory, Richland, WA. 
  26. Yang Z, T. Khangaonkar, and T. Wang. 2010. Assessment of Energy Removal Impacts on Physical Systems: Hydrodynamic Model Domain Expansion and Refinement, and Online Dissemination of Model Results. PNNL-19882, Pacific Northwest National Laboratory, Richland, WA. 
  27. Lee, C., T. Khangaonkar, Z. Yang, and E. Beamer. 2010. Development of a Land Use Planning Tool for Estuarine Habitat Protection, Restoration, and Cumulative Effects Assessment in Northern Puget Sound, WA. PNWD-4175, Battelle—Pacific Northwest Division, Richland, WA. 
  28. Yang, Z., T. Khangaonkar, R. Labiosa and T. Kim. 2010.  Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate-Scale Hydrodynamic Model.  PNNL-18484, Pacific Northwest National Laboratory, Richland, WA

Contact

Zhaoqing Yang
Earth Scientist
zhaoqing.yang@pnnl.gov
206-528-3057

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Policy
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • X (formerly Twitter)
  • Instagram
  • LinkedIn