Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
          • Metabolic Inflammatory Diseases
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Plant Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Solid Phase Processing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Flavor Physics
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Sustainable Energy
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Grid Resilience and Decarbonization
          • Earth System Modeling
          • Energy System Modeling
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Grid Resilience and Decarbonization
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Distributed Wind
          • Wildlife and Wind
          • Wind Data Management
          • Wind Resource Characterization
        • Energy Equity & Health
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Grid Resilience and Decarbonization
        • Internet of Things
        • Maritime Security
        • Climate Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • High-Performance Computing
      • Visual Analytics
    • Lab Objectives
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Diversity & Inclusion
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Academia
      • Distinguished Graduate Research Programs
      • Internships
      • Visiting Faculty Program
      • Joint Appointments
      • Joint Institutes
      • Linus Pauling Distinguished Postdoctoral Fellowship
      • Minority-serving Institutions
    • Community
      • Regional Impact
      • STEM Education
        • Resources
        • Student STEM Ambassadors
        • STEM Ambassadors in the Classroom
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Seattle Research Center
      • PNNL-Sequim
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Breadcrumb

  1. Research
  2. Scientific Discovery
  3. Nuclear & Particle Physics
  4. Neutrino Physics

Neutrino
Physics

Probing tiny, mysterious
particles to answer
the big questions

  • Biology
  • Chemistry
  • Earth & Coastal Sciences
  • Materials Sciences
  • Nuclear & Particle Physics
    • Dark Matter
    • Flavor Physics
    • Fusion Energy Science
    • Neutrino Physics
  • Quantum Information Sciences
  • News & Updates
  • Publications

How did we come to live in a universe full of matter? The laws of physics as we currently understand them would predict complete annihilation with antimatter just after the Big Bang. That we are here to ask such a question is proof that our understanding is not yet complete. Ironically, the key to this mystery likely involves the tiniest of things—a subatomic particle called the neutrino. 

Neutrino physics research at PNNL is supported by the U.S. Department of Energy, Office of Science, Nuclear Physics program which supports experimental and theoretical efforts to learn how visible matter came into being and evolved, how it organizes itself, and how it interacts. This fundamental research provides solid foundations for many other areas of science. The more we learn about neutrinos, the better we understand matter and the universe. The quest to learn such things often leads to technologies and applications that cannot be foreseen.

Currently, some basic neutrino properties, such as their absolute mass, and even their intrinsic particle nature are unknown. Even if individual neutrinos are extremely light, they are so abundant that they might collectively account for a significant amount of all the mass of normal matter in the universe. Furthermore, if they are the right kind of particle, they might have played a critical role in tipping our universe in favor of matter over antimatter. These properties are crucial for understanding the history of the universe. At PNNL, researchers work with international collaborations of scientists and engineers to address the unknown mass and particle nature of neutrinos through some of the world’s leading particle physics experiments.

Finding missing energy

The neutrino’s mass can be revealed through a small amount of “missing” energy in the decay of tritium, a radioactive form of hydrogen. The energy of the electrons emitted in those decays can be very precisely determined by observing their motions in a magnetic trap. Any missing energy must have been carried away as the mass of the unobserved neutrino, also emitted in the decay. 

The Project 8 collaboration was the first to measure individual electrons like this; the information about electron motion is carried by a signal with just a quadrillionth of a watt of power. Project 8 is currently working to grow its prototype demonstrations into the next generation of neutrino mass experiment.

The particle nature of the neutrino can be determined by observing an extremely rare type of radioactive decay: neutrinoless double beta decay. The “MAJORANA” Demonstrator Project, is searching for evidence using PNNL technology that produced the most radiopure copper in the world, thereby reducing background signals from natural radiation in the detector materials. PNNL scientists and engineers are now working toward the next generation of experiments to increase sensitivity to a quadrillion times the age of the universe by exposing tons of material for several years. In particular, they are working with an international team to create the next Enriched Xenon Observatory (nEXO) consisting of several tons of liquid xenon, enriched in the rare isotope xenon-136.

Related Links

DOE Nuclear Physics

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Program
  • Research
    • Scientific Discovery
    • Sustainable Energy
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • Twitter
  • Instagram
  • LinkedIn