Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
          • Metabolic Inflammatory Diseases
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Plant Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Solid Phase Processing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Flavor Physics
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Sustainable Energy
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Grid Resilience and Decarbonization
          • Earth System Modeling
          • Energy System Modeling
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Grid Resilience and Decarbonization
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Distributed Wind
          • Wildlife and Wind
          • Wind Data Management
          • Wind Resource Characterization
        • Energy Equity & Health
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Climate Security
        • Grid Resilience and Decarbonization
        • Internet of Things
        • Maritime Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • High-Performance Computing
      • Visual Analytics
    • Lab Objectives
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Diversity & Inclusion
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Academia
      • Distinguished Graduate Research Programs
      • Internships
      • Visiting Faculty Program
      • Joint Appointments
      • Joint Institutes
      • Linus Pauling Distinguished Postdoctoral Fellowship
      • Minority-serving Institutions
    • Community
      • Regional Impact
      • STEM Education
        • Resources
        • Student STEM Ambassadors
        • STEM Ambassadors in the Classroom
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Seattle Research Center
      • PNNL-Sequim
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Breadcrumb

  1. Research
  2. Sustainable Energy
  3. Renewable Energy
  4. Grid Integration of Renewable Energy

Grid Integration of
Renewable Energy

Greening the grid and a
changing energy landscape

  • Electric Grid Modernization
  • Energy Efficiency
  • Energy Storage
  • Environmental Management
  • Fossil Energy
  • Nuclear Energy
  • Renewable Energy
    • Solar Energy
    • Wind Energy
    • Energy Equity & Health
    • Marine Energy
    • Hydropower
    • Grid Integration of Renewable Energy
    • Geothermal Energy
  • Transportation
  • News & Updates
  • Attend a Grid Integration of Renewable Energy Event
  • Publications
  • Projects
  • Explainer Articles

With the growth of renewable energy, the electric grid is shifting. To make sure the grid is ready to meet the rising tide of clean energy technologies, advanced integration—including grid modernization and visions for future designs—is needed.

Grid integration of renewable energy means reimagining operation and planning for a reliable, cost-effective, and efficient electricity system with cleaner new energy generators. This includes where it is built, how it is optimized, and how it is used to power a carbon-free future. It means providing grid operators with the situational awareness and control capabilities they need to plan and manage a rapidly changing energy resource mix.

The path forward involves assessing long-range demands and evaluating pathways for efficient performance. For example, projecting atmospheric patterns can help guide—and maximize—siting of solar or wind power. It also includes evaluating, scheduling, and optimizing future energy market design using advanced modeling and simulation to understand the operational connections to renewable energy availability, generator performance, grid reliability, and electricity delivery to customers.

Grid integration of renewable energy includes building resilience against threats, such as natural disasters and cyberthreats. It also involves overcoming challenges, such as instantaneous to seasonal unavailability of renewable resources. By developing solutions and mitigative measures across both information technology and operational technology systems, we can prepare for a cleaner, greener, and more resilient energy landscape.

Renewable-grid integration for a carbon-free future

Pacific Northwest National Laboratory is committed to being the national research and development leader in helping the nation build a cleaner, more resilient, and more secure power grid. Our work in the grid integration area includes:

  • Developing modeling, control, and optimization capabilities for the renewable-dominated power grid, leveraging power electronics and data analytics capabilities
  • Analyzing renewable energy system performance using advanced prediction capabilities
  • Advancing prediction capabilities to support the evolution of networks to withstand extreme events (e.g., wildfires, tsunamis, hurricanes, or cyber-attacks) or asynchronous supplies
  • Assessing locational value within the grid, with a focus on novel technologies where the value is not well understood or represented
  • Optimizing interconnected technologies (e.g., generator, electric load, and storage) at a variety of scales to improve operations and efficiency, along with reducing costs and need for peaking or emitting facilities
  • Analyzing meter-, microgrid-, feeder-, substation-, and community-scale networks for planning and optimization
  • Developing new economic frameworks that encompass a full range of renewable energy services and costs rather than a focus on traditional energy resources
  • Evaluating models, data, costs, and assumptions within grid and utility processes to assure equitable treatment, reasonable time, and cost for interconnection and to inform how technology can be designed and validated for more effective integration.

Related Divisions

Electricity Infrastructure and Buildings Division
Energy Processes & Materials Division
Coastal Sciences Division
Earth Systems Science Division

Contacts

Zhenyu Huang
Laboratory Fellow/Technical Group Manager, Energy and Environment Directorate
zhenyu.huang@pnnl.gov
(509) 372-6781
Rebecca O'Neil
Advisor
rebecca.oneil@pnnl.gov

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Program
  • Research
    • Scientific Discovery
    • Sustainable Energy
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • Twitter
  • Instagram
  • LinkedIn