Researchers used novel methods to safely create and analyze plutonium samples. The approaches could prove influential in future studies of the radioactive material, benefitting research in legacy, national security and nuclear fuels.
A recent study pinpointed the reaction front where lithium (Li) dendrites can come into contact with cathode materials. It also detailed the Li propagation pathway and reaction steps that lead to cathode failure.
Imagine a hollow tube thousands of times smaller than a human hair. Now envision filthy water flowing through an array of such tubes, each designed to capture contaminants on the inside, with clean water emerging at the other end.
In fast-neutron reactors, fuel is sealed in ~7 millimeter diameter steel tubes called cladding. When a high-energy "fast" neutron strikes an atom in the steel, it can knock the atom out of place, like a cue ball striking another billiard ball. This leaves two types of damage in the metal: an empty spot where the atom was, and the displaced atom wedged between other atoms. Over time, these defects typically drive undesirable rearrangement of the microstructure, potentially reducing the life of the cladding.