Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Metabolic Inflammatory Diseases
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
      • Chemistry
        • Catalysis
        • Chemical Physics
      • Earth & Coastal Sciences
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Ecosystem Science
        • Plant Science
        • Coastal Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Solid Phase Processing
        • Science of Interfaces
        • Precision Materials by Design
        • Materials in Extreme Environments
      • Nuclear & Particle Physics
        • Dark Matter
        • Neutrino Physics
        • Flavor Physics
        • Fusion Energy Science
      • Quantum Information Sciences
    • Sustainable Energy
      • Electric Grid Modernization
        • Distribution
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Grid Resilience and Decarbonization
          • Earth System Modeling
          • Energy System Modeling
        • Transmission
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Building-Grid Integration
          • Advanced Lighting
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Grid Resilience and Decarbonization
        • Residential Buildings
          • Energy Efficient Technology Integration
          • Home Energy Score
          • Building America Solution Center
      • Energy Storage
        • Chemical Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
      • Environmental Management
        • Environmental Remediation
        • Waste Processing
        • Radiation Measurement
      • Fossil Energy
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Subsurface Energy Systems
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Reactor Licensing
        • Reactor Operations
        • Fuel Cycle Research
        • Advanced Reactors
      • Renewable Energy
        • Grid Integration of Renewable Energy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower and the Electric Grid
          • Hydropower Cybersecurity and Digitalization
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Wind Energy
          • Distributed Wind
          • Offshore Wind
          • Uncertainty Quantification
          • Wildlife and Wind
          • Wind Data Archive and Portal
          • Wind Resource Characterization
        • Geothermal Energy
        • Solar Energy
        • Energy Equity & Health
      • Transportation
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Explosives Detection
        • Pathogen Science & Detection
          • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Nuclear Explosion Monitoring
        • Nuclear Forensics
        • Radiological & Nuclear Detection
        • Ultra-Sensitive Nuclear Measurements
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Climate Security
        • Grid Resilience and Decarbonization
        • Internet of Things
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • High-Performance Computing
      • Software Engineering
      • Visual Analytics
      • Computational Mathematics & Statistics
    • Lab Objectives
    • Publications & Reports
    • Featured Research
    • Computing & Analytics
  • People
    • Inventors
    • Diversity
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Academia
      • Distinguished Graduate Research Programs
      • Internships
      • Visiting Faculty Program
      • Joint Appointments
      • Joint Institutes
      • Linus Pauling Distinguished Postdoctoral Fellowship
      • Minority Serving Institutions
    • Community
      • STEM Education
        • Resources
        • Student STEM Ambassadors
        • STEM Ambassadors in the Classroom
      • Philanthropy
      • Volunteering
      • Economic Impact
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • Radiochemical Processing Laboratory
      • PNNL Seattle Research Center
      • PNNL-Sequim
      • Shallow Underground Laboratory

Triton

  • Technology Research
    • Triton Field Trials
    • Changes in Habitat
    • Electromagnetic Fields
    • Collision Risk
    • Underwater Noise
    • Marine Energy Predictive Modeling
    • Environmental Monitoring Technology Development
  • Technology Development
    • FOA Technical Development
    • Integral NoiseSpotter
    • DAISY
    • BioSonics Inc. Perimeter Detector
    • Woods Hole Oceanographic Institution EMF Detection
    • Integral Benthic Habitat Mapping
    • 3G-AMP
    • UMSLI
  • Meet the Team
  • Triton Stories
  • Work With Us
  • News
  • Resources

Breadcrumb

  1. Home
  2. Projects
  3. Triton

Triton Field Trials

Testing environmental monitoring technology and methods to assess potential impacts of marine energy devices on marine systems  

Triton Field Trials (TFiT) has the goal of advancing knowledge around impacts of marine energy devices and improving environmental monitoring procedures and technologies. This task involves identifying the main environmental stressors associated with marine energy devices, exploring cost-effective methods and technologies used to monitor those stressors, and performing field tests on those various instruments at diverse sites. Additionally, the TFiT team is opening the conversation to developers, regulators, and policy makers to understand marine energy industry needs and how to best serve them.  

TFiT studies the four main stressors of concern as identified in the 2020 OES-Environmental State of the Science Report, which include: 

  • Changes in habitat  

  • Collision risk  

  • Underwater noise  

  • Electromagnetic fields  

Illustration of Triton Field Trials stressor topics, including changes in habitat, underwater noise, collision risk, and electromagnetic fields.
The Triton Field Trials researches technologies to monitor environmental stressors associated with marine energy devices, including changes in habitat, underwater noise, electromagnetic fields, and collision risk.
(Illustration by Stephanie King | Pacific Northwest National Laboratory) ​

 

An initial review was carried out to identify the standard sensors and research methods used by 119 marine energy projects around the world to monitor these four stressors. Subject matter experts were consulted on the effectiveness and feasibility for each method and technology. The approaches and technologies deemed most successful are put to the test at several field sites in diverse conditions along the U.S. West Coast.  

The TFiT team has identified sites with diverse physical and biological characteristics representing environments and conditions suitable for wave, tidal, and riverine systems. Testing various environmental monitoring technologies and approaches at these sites will help establish the most effective monitoring  practices for different settings and scenarios. The findings from the field trials will inform the development of guidelines for methods and instrumentation to monitoring each of the stressors. The team has gathered feedback from stakeholders to understand the concerns and needs of the industry from an environmental monitoring perspective. This collective effort will help streamline monitoring and support permitting of marine energy deployments.  

The TFit team hosted the Collaboration for Marine Renewable Energy Environmental Monitoring Guidelines workshop at the Global OCEANS 2020 Conference. This workshop presents each of the four stressors the field trials are focused on, and opened the discussion to a group of diverse stakeholders. (PNNL)
Subscribe to the Triton newsletter

Research topics

Environmental Monitoring for Marine Energy
Marine Energy

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Program
  • Research
    • Scientific Discovery
    • Sustainable Energy
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • Twitter
  • Instagram
  • LinkedIn