Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
        • Predictive Phenomics
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Global Change
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Smart Advanced Manufacturing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Energy Resiliency
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Wind Resource Characterization
          • Wildlife and Wind
          • Community Values and Ocean Co-Use
          • Wind Systems Integration
          • Wind Data Management
          • Distributed Wind
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Internet of Things
        • Maritime Security
        • Millimeter Wave
        • Mission Risk and Resilience
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • Future Computing Technologies
        • Adaptive Autonomous Systems
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Education
      • Undergraduate Students
      • Graduate Students
      • Post-graduate Students
      • University Faculty
      • University Partnerships
      • K-12 Educators and Students
      • STEM Education
        • STEM Workforce Development
        • STEM Outreach
        • Meet the Team
      • Internships
    • Community
      • Regional Impact
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
      • Visual Intellectual Property Search (VIPS)
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Portland Research Center
      • PNNL Seattle Research Center
      • PNNL-Sequim (Marine and Coastal Research)
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Triton

  • Current Research
    • Marine Wildlife Detection and Tracking
    • Particle Motion and Flow Noise
    • Probability of Encounter Model
    • Anthropogenic Light
    • Integrated Collision Detection and Mitigation
    • Collision Risk Data Collection and Processing
  • Past Research
    • Triton Field Trials
    • FOA Technology Development
    • Fish Mesocosm Study
  • Meet the Team
  • Triton Stories
  • Work With Us
  • News
    • Newsletter Archive
  • Resources

Breadcrumb

  1. Home
  2. Projects
  3. Triton
  4. Current Research

Blade Integrated Collision Detection Project

Existing methods to monitor for potential collisions between marine animals and tidal turbine blades include optical cameras and acoustic cameras (sonars). While these methods can provide valuable information about animal behavior around tidal turbines, it is often challenging or impossible to determine whether a collision occurred or potential effects on the animal. Triton’s Blade Integrated Collision Detection (BICD) project tests a new method to monitor for collisions between marine animals and tidal turbines using sensors integrated into turbine blades. Strain gauges embedded in turbine blades can monitor the structural health of the blade, providing valuable information for turbine developers on maintenance requirements. With this project, the team is researching how strain gauges could also be used to detect collisions with an animal.   
 

A marine mammal model during flume experiments.
A marine mammal model about to collide with a small-scale turbine to test ability to detect collision with strain gauges. (Photo by the University of Washington)

To understand whether this is possible, the team collaborated with the Pacific Marine Energy Center and the University of Washington’s Harris Hydraulics Laboratory to conduct scaled experiments in a flume to test strain gauge sensitivities and determine whether detection is feasible. Flumes are constructed channels in laboratories where water can flow through in a controlled environment. For these studies, a small-scale tidal turbine with strain gauges affixed to one blade was placed in the flume. Silicone animal models were released upstream and allowed to collide with the turbine. The recorded data indicate that strain gauges are suitable to detect collisions in controlled settings, like the flume, but more work is needed to understand how this might scale to larger turbines or more turbulent flows characteristic of actual tidal energy sites. 

The next phase of the BICD project aims to determine whether collisions can also be detected under realistic flow and turbulence conditions. To achieve this, the BICD team will conduct another round of testing at the University of Washington’s Alice C. Tyler flume, leveraging new capabilities to produce more turbulent flow. This test will also be co-supported by the Testing Expertise and Access to Marine Energy Research (TEAMER) program. Ultimately, this research could serve to build a foundation for future in-water research or the development of collision mitigation strategies—real-time detection of collisions could potentially be integrated into turbine control schemes to reduce the speed of the blade, and consequently, lessen the impact to the animal. 

Read more about the project:

  • Testing Collision Risk Solutions: Can the Turbine Itself Be the Answer?
  • Triton Explains: Collision Risk Research     
     
University of Washington master’s student Isabella Pestovski places a marine mammal surrogate into the flume to see how the surrogate behaves in the simulated current. (Photo by University of Washington)
Isabella Pestovski, a University of Washington master's student who led the experimental design and execution, places a marine mammal model into the flume to see how the model behaves around a tidal turbine prototype in the simulated current. (Photo by the University of Washington)

Related Links

Testing Collision Risk Solutions: Can the Turbine Itself Be the Answer?Making Waves in Marine Energy Engineering with Abigale Snortland

Contacts

Emma Cotter
Environmental Engineer
emma.cotter@pnnl.gov
(206) 528-3132
Molly Grear
Ocean Engineer
molly.grear@pnnl.gov
(206) 528-3320

Research topics

Marine Energy
Environmental Monitoring for Marine Energy

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Policy
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • X (formerly Twitter)
  • Instagram
  • LinkedIn