Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
          • Metabolic Inflammatory Diseases
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Plant Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Solid Phase Processing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Flavor Physics
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Sustainable Energy
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Grid Resilience and Decarbonization
          • Earth System Modeling
          • Energy System Modeling
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Grid Resilience and Decarbonization
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Distributed Wind
          • Wildlife and Wind
          • Wind Data Management
          • Wind Resource Characterization
        • Energy Equity & Health
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Climate Security
        • Grid Resilience and Decarbonization
        • Internet of Things
        • Maritime Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • High-Performance Computing
      • Visual Analytics
    • Lab Objectives
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Diversity & Inclusion
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Academia
      • Distinguished Graduate Research Programs
      • Internships
      • Visiting Faculty Program
      • Joint Appointments
      • Joint Institutes
      • Linus Pauling Distinguished Postdoctoral Fellowship
      • Minority-serving Institutions
    • Community
      • Regional Impact
      • STEM Education
        • Resources
        • Student STEM Ambassadors
        • STEM Ambassadors in the Classroom
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Seattle Research Center
      • PNNL-Sequim
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Salish Sea Model

  • Model
    • History
    • Hydrodynamics
    • Circulation Maps
    • Water Quality
    • Toxics Fate & Transport
  • Projects
    • Habitat Restoration
    • Water Quality
    • Marine Pollution
    • Oil Spill Transport
    • Sediment Transport
  • News and Publications
  • Data Portal
  • About Us

Breadcrumb

  1. Home
  2. Projects
  3. Salish Sea Model

SSM Marine Pollution

Overview

Salish Sea supports a diverse ecosystem and harbors numerous marine species which are vulnerable to the adverse impacts from marine pollution from anthropogenic causes and population growth. In addition to the existential threat to marine species, marine pollution in Salish Sea has a great impact on the region's economy where fisheries and other forms of aquaculture is a multi-billion-dollar fishing industry. Hence, the local agencies which are responsible for maintaining the water quality standard of the Salish Sea have a keen interest on developing modeling tools which are useful to their mission. PNNL has developed such modeling tools with the collaboration of US EPA and Department of Ecology that work with the Salish Sea Model to conduct exposure assessment studies and help design solutions to mitigate the problem of marine pollution in the Salish Sea.

Projects

FVCOM thumbnail

Developing FVCOM-plume Model: A Three Dimensional Outfall Plume Model for Dynamic Tidal Environments - 3D outfall plume simulation under tidal conditions and captures the near-field plume characteristics, while simulating far-field transport using detailed hydrodynamic information  


 

microplastic transport thumbnail

Simulating Microplastics: Transport in the Salish Sea - transport characteristics of microplastics in the Salish Sea were analyzed using a particle tracking model and the hydrodynamic solutions produced by the Salish Sea Model (SSM). This study explores microplastics accumulation features and characteristics in the Salish Sea controlled primarily by bathymetry, shoreline complexity, and tidal circulation.

 

Salish Sea hosts nearly a hundred of waste water outfalls which discharge a considerable amount of nutrients and other pollutants in addition to the loads delivered by numerous stormwater and watershed runoff streams. It is the responsibility of agencies such as U.S. EPA and Washington State Department of Ecology (Ecology) to assess the impact of these point sources and regulate them to maintain the water quality at acceptable levels for the designated uses. FVCOM-ICM model developed at PNNL in collaboration with Ecology is being used to assess the nutrient loading to mitigate the marine pollution caused by the eutrophication, toxic algal blooms and etc. In addition to this benchmark water quality model, we recently also developed a modeling tool (FVCOM-plume) to conduct detailed assessments of outfall discharges under tidal conditions using the same unstructured grid framework in the Salish Sea model. FVCOM-plume is capable of simulating both near-field and far-field plume features and accommodate cumulative effects of multiple outfalls with multi-port diffusers under tidal conditions in a complex topography. PNNL is developing Lagrangian Particle Tracking techniques for exposure assessment efforts. This component of the Salish Sea model has been recently used in a study to investigate the basic fate and transport of microplastics in Salish Sea with the growing concern of microplastic induced marine pollution.

Contact

Tarang Khangaonkar
Program Manager, Coastal Ocean Modeling
tarang.khangaonkar@pnnl.gov
206-528-3053

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Program
  • Research
    • Scientific Discovery
    • Sustainable Energy
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • Twitter
  • Instagram
  • LinkedIn