This research addresses two topics that are not well understood in literature: the interplay between organic linkers and substrates during MOF crystallization, as well as the mechanisms that control heterostructure formation in solutions.
Existing techniques to detect pertechnetate in the environment have drawbacks. PNNL’s redox sensor technology uses a gold probe to accurately and efficiently measure low levels of pertechnetate—and possibly other contaminants—in groundwater
Researchers adding water to the surface of alumina measured some surprising results that raise important questions regarding the fundamental reactions that govern chemical transformations of aluminum oxides and hydroxides.
Scientists at the Interfacial Dynamics in Radioactive Environments and Materials (IDREAM) sort out which compounds are present and their concentrations, providing an important new tool with broad applicability.
Scientists at PNNL's Center for Molecular Electrocatalysis (CME) are working to understand the fundamental reactivity of H2 that could contribute to making hydrogen a more widely used fuel source.
Dr. Morris Bullock and Dr. Monte Helm reviewed the catalysis research at the Center for Molecular Electrocatalysis, where Bullock is the director, in a recent article in Accounts of Chemical Research.
Generating power without gasoline, diesel, or coal could change our nation's energy and security landscape. However, replacing technologies that use fossil fuel with ones that require rare metals is unsustainable.
Making hydrogen economically demands a quick, efficient reaction. Creating that reaction demands a catalyst. CME scientists found that a proton and water-packed environment lets the catalyst work 50 times faster—without added energy.
Quickly, reliably turning wind energy into fuel means looking beyond the catalyst to its foundation, according to a recent study from the Center for Molecular Electrocatalysis.
At PNNL, scientists have elaborated on a strategy to map the catalytic route. Scientists can now explore design decisions with molecular catalysts that store or release energy from the chemical bond in dihydrogen (H2).
Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at PNNL and Villanova University.