March 30, 2020

When a pinch is problematic: Detecting pertechnetate in groundwater

PNNL develops an effective tool for measuring a tricky contaminant


A PNNL researcher holds a redox sensor in the project’s lab in the Radiochemical Processing Laboratory.  Andrea Starr | PNNL

Imagine trying to detect and measure a pinch of salt in an Olympic-size swimming pool. Now pretend the tools you are using don’t work well. Some can detect the salt but can’t tell you how much is in there, and others confuse salt with chlorine.

Now swap the swimming pool for a source of groundwater and the salt for a radioactive contaminant called pertechnetate.

ACS Journal Pertechnetate
The future of groundwater contamination measurement? The large thiol claws of PNNL’s subsurface probe with custom gold tips detect and measure pertechnetate in aqueous environments. Cover illustration by Rose Perry, PNNL

Pertechnetate is a byproduct of nuclear waste. If it ends up where it is not supposed to be—like, in groundwater—it could impact human health, which is why researchers and regulators keep a close lookout for it. The environmental safety limits for pertechnetate are roughly equivalent to a pinch of salt in an Olympic pool. And there are only a few technologies to measure it, each with limitations.

PNNL research tackles this challenge with new technology to detect and accurately measure pertechnetate at super low levels in groundwater. This research, “Redox-Based Electrochemical Affinity Sensor for Detection of Aqueous Pertechnetate Anion,” was the cover article for the March 2020 edition of ACS Sensors (DOI: 10.1021/acssensors.9b01531). 

Why it matters: The Environmental Protection Agency drinking water standard for pertechnetate is 0.000000052 grams per liter (that’s roughly 1/6000th the weight of a single poppy seed). While techniques exist for detection of pertechnetate in the environment, many have their drawbacks. PNNL’s technology can accurately measure low levels of pertechnetate in groundwater. Additionally, this proof of concept has the potential to be applied to other target contaminants simultaneously, increasing efficiency for environmental sensing.

Summary: The new technology acts like a coin counter, but at a microscopic level. It sorts one type of chemical from another, providing the total amount of a target chemical at the end. The tool uses custom probes with a gold electrode that only allows the target groundwater contaminants to stick while the other chemicals bounce off.

Sulfur likes to bind to gold and it also tends to react with pertechnetate, making sulfur-containing compounds an ideal intermediate in tool development. The sulfur sticks to the gold probe, then reacts with the pertechnetate, which forms a precipitate. The precipitate inhibits an electric current pulsing through the probe, providing an inverse measurement of pertechnetate concentration.

What’s Next: While this work was specifically focused on pertechnetate, there is potential to expand the technology to simultaneous multiple targets with the goal of increasing the efficiency of environmental measurements.

Sponsors: This research was funded by the Laboratory Directed Research and Development program at PNNL and by the Deep Vadose Zone program under the U.S. Department of Energy’s (DOE’s) Office of Environmental Management. Part of this research was performed at the Environmental Molecular Sciences Laboratory, a national user facility at PNNL managed by the DOE Office of Biological and Environmental Research.

PNNL Research Team: Sayandev Chatterjee, Meghan S. Fujimoto, Yingge Du, Gabriel B. Hall, Nabajit Lahiri, Eric D. Walter, Libor Kovarik. ACS Sensors cover illustration by Rose Perry, PNNL.