PNNL SFA: Role of Microenvironments and Transition Zones in Subsurface Reactive Contaminant Transport

Microbial Ecology

Allan Konopka
physiological and community ecology

Dr. Xueju Lin (postdoctoral associate)
Molecular and physiological ecology

Dave Kennedy
Biogeochemistry & Head drover

… with assistance of Microbiology staff

Collaborator: Prof. Rob Knight, U Colorado-Boulder
Hanford IFRC: Deep Characterization Borehole

July, 2008: Samples retrieved in core liners from discrete strata

Hanford and Ringold formation
Microbiological characterization of sediments

- 40 ft of core over 175 ft borehole (Hanford and Ringold formations)
- 17 samples across geological formations and transition zones

Cultivation-independent analyses

- **Biomass**
 - Direct microscopic counts
 - Phospholipid fatty acids (?)
 - % Respiring cells
- **Phylogenetic / functional diversity and relative abundance**
 - Census of Bacterial/Archaeal 16S rRNA gene sequences
 - JGI approved CSP project for Sanger sequencing
 - Pyrosequencing by U Colorado collaborators
 - Real time PCR for specific phylogenetic and functional groups
- **Assessment of potential for TEA reduction**
 - Amend samples with electron donor
 - Add “natural” TEA: Mn⁴⁺, Fe³⁺, NO₃⁻, SO₄⁻²
 - Add U or Tc. Depend upon natural abundance of Fe(III) or exogenously added ferrihydrite as terminal electron acceptor (TEA)

Cultivation-dependent analyses

- Enrichment cultures with various TEA's
- High-efficiency cultivation strategies
- Analysis of metabolic versatility in cultivars

Provide Hanford-relevant microbes for molecular- to pore-scale projects

Multivariate statistical analysis of microbial census + geochemical / mineralogical data to generate hypotheses for field-scale studies
Biomass distribution in subsurface

Graph 1:
- **X-axis:** Acid-extractable Fe(II) (µmol/g)
- **Y-axis:** Depth (feet)
- **Legend:**
 - Hamford - Ringold contact
 - Oxic - reducing interface

Graph 2:
- **X-axis:** Redox sensor green positive cells (%)
- **Y-axis:** DAPI positive cells ($x10^8$ g$^{-1}$)
- **Legend:**
 - % active cells
 - Total cells

Legend:
- % cells w/ intact membrane
 - 36-60
 - 30-65
 - 80
 - 31-65
 - 23-30

Notes:
- Biomass distribution data is presented in two graphs, showing the distribution of acid-extractable Fe(II) and DAPI positive cells across different depths, with a focus on % cells with intact membrane.
Molecular ecology

DNA isolated from subsurface sediments

• 17 strata from Deep Characterization Borehole -- **Vertical heterogeneity**
• 68 samples (Hanford, Ringold oxidized, Ringold reduced) obtained from 27 of 35 wells in IFRC well field -- **Horizontal heterogeneity**

What we obtain:

• Yields: 120 ng DNA per g (Hanford formation) & 2-5 ng DNA per g (Ringold formation, 155 & 169 ft.)
• Fragment size: 10-23 kb
• DNA amplifiable with Taq polymerase and Phi-29 polymerase
Molecular ecology

Census of Bacterial / Archaeal populations

Based upon analysis of 16S rRNA gene sequences

- Joint Genome Institute – Community Sequencing Program
 - PNNL amplified 16S rRNA genes & constructed libraries for Bacteria (20 samples) and Archaea (12 samples)
 - JGI will provide 384 Bacterial and 192-384 Archaeal near-full length sequences per sample [Mar-Apr, 2009]
- U Colorado / Rob Knight -- pyrosequencing
 - Analyze ca. 100 different samples (vertical & horizontal heterogeneity)
 - Obtain several thousand sequences per sample
 - Sequence length = 240 bases (less phylogenetic resolution)
 - Ecological value: compare community similarities
16S rRNA gene sequences are molecular chronometers, useful for distinguishing microbes

>750K aligned sequences in RDP database

Figure by Jamie Cannone, courtesy of Robin Gutell; data from the Comparative RNA Web Site: www.rna.icmb.utexas.edu
Molecular ecology

Census of Bacterial / Archaeal populations

Based upon analysis of 16S rRNA gene sequences

- Joint Genome Institute – Community Sequencing Program
 - PNNL amplified 16S rRNA genes & constructed libraries for Bacteria (20 samples) and Archaea (12 samples)
 - JGI will provide 384 Bacterial and 192-384 Archaeal near-full length sequences per sample [Apr, 2009]
- U Colorado / Rob Knight -- pyrosequencing
 - Analyze ca. 100 different samples (vertical & horizontal heterogeneity)
 - Obtain several thousand sequences per sample
 - Sequence length = 240 bases (less phylogenetic resolution)
 - Ecological value: compare community similarities
Molecular ecology: pyrosequencing 16S rRNA genes

UniFrac measures the phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree that leads to descendants from either one environment or the other, but not both.
Molecular ecology

Quantitative PCR --

- If PCR primers available to amplify a specific target gene, can quantify abundance of that gene in environmental DNA
- Bacteria vs. Archaea
 - Archaea comprise 0-8% of total 16S rRNA gene copies in DCB samples
- Functional groups (use of Terminal Electron Acceptors)
 - Nitrate (0.5 mM in GW) -- *nosZ* (nitrite reductase)
 - Sulfate (0.5 mM in GW) -- *dsrA* (sulfite reductase)
 - Fe / Mn -- no useful probes for functional genes
 - Phylogenetic (16S rRNA genes) for known groups
 - Geobactereaceae, *Anaeromyxobacter*, *Shewanella*
Molecular ecology – quantitative PCR

Relative abundance: gene copies normalized to 16S rRNA gene abundance
Neighbor-joining tree of 16S rRNA gene sequences amplified with *Shewanella*-specific primers 211f/1259r.

- Tree was constructed with MEGA4 program.
- Numbers in branches are bootstrap values (values less than 50 are not shown).
- Triangles represent Hanford clones with PCR products pooled from three different sampling depths.

Preliminary analysis of sequenced clones

Neighbor-joining tree of 16S rRNA gene sequences amplified with *Shewanella*-specific primers 211f/1259r.
Microbial activity in sediments: TEA consumption – a scoping experiment

Added Nitrate

Electron donors: Acetate + succinate + glucose

Added Hydrous Ferric Oxide or native Fe minerals

0.5 N HCl-ext. Fe(II) at day 32

- live - HFO
- sterile - HFO
- live - No acceptor
- sterile - No acceptor
What we are thinking about post census …

• Limiting factors for microbial activity
 – “Bioassay” expts w/ C, N, P
 – 3H-leucine incorporation

• Biomass distribution among particles in Hanford formation
 – Descriptive statistics: mean, variance, normal or log normal
 – ATP as sensitive, high-throughput biomass assay

• Groundwater DOC
 – Isolation
 – Characterization (NMR, FTICR MS)
 – Microbial degradation

• In-well experiments
 – Natural substrates or BioSep beads
 – Colonization rates
 – In situ activity
 – Stable isotope probing