Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Metabolic Inflammatory Diseases
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
      • Chemistry
        • Catalysis
        • Chemical Physics
      • Earth & Coastal Sciences
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Plant Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Solid Phase Processing
        • Science of Interfaces
        • Precision Materials by Design
        • Materials in Extreme Environments
      • Nuclear & Particle Physics
        • Dark Matter
        • Neutrino Physics
        • Flavor Physics
        • Fusion Energy Science
      • Quantum Information Sciences
    • Sustainable Energy
      • Electric Grid Modernization
        • Distribution
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Grid Resilience and Decarbonization
          • Earth System Modeling
          • Energy System Modeling
        • Transmission
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Building-Grid Integration
          • Advanced Lighting
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Grid Resilience and Decarbonization
        • Residential Buildings
          • Energy Efficient Technology Integration
          • Home Energy Score
          • Building America Solution Center
      • Energy Storage
        • Chemical Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
      • Environmental Management
        • Environmental Remediation
        • Waste Processing
        • Radiation Measurement
      • Fossil Energy
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Subsurface Energy Systems
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Reactor Licensing
        • Reactor Operations
        • Fuel Cycle Research
        • Advanced Reactors
      • Renewable Energy
        • Grid Integration of Renewable Energy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower and the Electric Grid
          • Hydropower Cybersecurity and Digitalization
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Wind Energy
          • Distributed Wind
          • Offshore Wind
          • Uncertainty Quantification
          • Wildlife and Wind
          • Wind Data Archive and Portal
          • Wind Resource Characterization
        • Geothermal Energy
        • Solar Energy
        • Energy Equity & Health
      • Transportation
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Explosives Detection
        • Pathogen Science & Detection
          • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Nuclear Explosion Monitoring
        • Nuclear Forensics
        • Radiological & Nuclear Detection
        • Ultra-Sensitive Nuclear Measurements
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Climate Security
        • Grid Resilience and Decarbonization
        • Internet of Things
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • High-Performance Computing
      • Software Engineering
      • Visual Analytics
      • Computational Mathematics & Statistics
    • Lab Objectives
    • Publications & Reports
    • Featured Research
    • Computing & Analytics
  • People
    • Inventors
    • Diversity
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Academia
      • Distinguished Graduate Research Programs
      • Internships
      • Visiting Faculty Program
      • Joint Appointments
      • Joint Institutes
      • Linus Pauling Distinguished Postdoctoral Fellowship
      • Minority Serving Institutions
    • Community
      • STEM Education
        • Resources
        • Student STEM Ambassadors
        • STEM Ambassadors in the Classroom
      • Philanthropy
      • Volunteering
      • Economic Impact
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • Radiochemical Processing Laboratory
      • PNNL Seattle Research Center
      • PNNL-Sequim
      • Shallow Underground Laboratory

Breadcrumb

  1. Research
  2. Data Science & Computing
  3. High-Performance Computing

High-Performance
Computing

Meeting challenges with
new computational capabilities

Our computing research is enabled, in part, by the Constance computing cluster. The system is a workhorse for parallel applications, including those in molecular dynamics, climate, and fluid flow calculations, or for high-throughput computing uses such as in high-energy physics or machine learning.

Andrea Starr | Pacific Northwest National Laboratory

  • Scientific Discovery
  • Sustainable Energy
  • National Security
  • Data Science & Computing
    • Artificial Intelligence
    • Graph and Data Analytics
    • High-Performance Computing
    • Software Engineering
    • Visual Analytics
    • Computational Mathematics & Statistics
  • Lab Objectives
  • Publications & Reports
  • Featured Research
  • Computing & Analytics
  • News & Updates
  • Attend a High-Performance Computing Event
  • Publications
  • Projects
  • Explainer Articles

At Pacific Northwest National Laboratory (PNNL), high-performance computing (HPC) encompasses multiple research areas and affects both computer science and a broad array of domain sciences.

PNNL provides science, technologies, and leadership for creating and enabling new computational capabilities to solve challenges using extreme-scale simulation, data analytics, and machine learning. We deliver the computer science, mathematics, computer architecture, and algorithmic advances that enable integration of extreme-scale modeling and simulation with knowledge discovery and model inference from petabytes of data.

Our research covers a multitude of areas, including advanced computer architectures, system software and runtime systems, performance modeling and analysis, quantum computing, high-performance data analytics, and machine learning techniques at scale. Our integrated computational tools enable domain science researchers to analyze, model, simulate, and predict complex phenomena in areas ranging from molecular, biological, subsurface, and climate sciences to complex networked systems. For example, the Scalable High-Performance Algorithms and Data-Structures library—or SHAD—can provide scalability and performance to support different application domains, including graph processing, machine learning, and data mining.

We have recognized expertise in the area of evaluation and capability prediction for both current and emerging large-scale system architectures. The Center for Advanced Technology Evaluation (CENATE) project evaluates emerging hardware technologies for use in future systems, exploring both the performance and security ramifications of novel architectural designs and features. CENATE uses both small-scale testbeds and predictive performance modeling to explore system scales that are currently unavailable.

Our researchers also lead efforts to prepare the U.S. Department of Energy for the upcoming exascale computing era. We are developing software tools such as the Global Arrays Toolkit, which provides a high-level, easy-to-use programming model with abstractions suitable for the science domains it targets. We are also innovating in areas of data-model convergence, charting a new path in integrating elements of HPC with data analytics to enable new scientific discoveries and computational capabilities. 

Recent News

APRIL 14, 2022
Feature

Simulating a Quantum Future

Read
Artist’s rendering of a quantum computer.
MARCH 17, 2022
Staff Accomplishment

Ang to Support DOE Panel on Industry Collaboration

Read
CENATE image
MARCH 1, 2022
Staff Accomplishment

BOPTEST Paper Earns Journal Award

Read
PNNL team members who worked on BOPTEST paper
SEE MORE RELATED NEWS

Research Highlights

APRIL 4, 2022
Research Highlight

Scalable Simulation of Quantum Circuits

Read
quantum computing image
AUGUST 25, 2020
Research Highlight

Secretary of Energy Advisory Board (SEAB) Report Recognizes PNNL Contributions

Read
ML and AI

Facilities & Centers

Environmental Molecular Sciences Laboratory

Related Divisions

Advanced Computing, Mathematics, and Data
Computing and Analytics Division

Related Links

What is Graph Analytics?Job OpeningsAdvanced ArchitecturesCENATEExascale Computing ProjectHigh-Performance Data AnalyticsModeling and SimulationScalable Machine LearningSystem Software and ApplicationsTestbeds and Tools

Contact

Kevin J. Barker
Group Leader, High-Performance Computing Group
kevin.barker@pnnl.gov
509-375-6743

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Program
  • Research
    • Scientific Discovery
    • Sustainable Energy
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • Twitter
  • Instagram
  • LinkedIn