Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Human Health
        • Integrative Omics
        • Microbiome Science
      • Chemistry
        • Catalysis
        • Chemical Physics
      • Computational Research
        • Artificial Intelligence
        • Computational Mathematics & Statistics
        • Graph and Data Analytics
        • High-Performance Computing
        • Software Engineering
        • Visual Analytics
      • Earth System Science
        • Plant Science
        • Atmospheric Science
        • Terrestrial Aquatics
        • Subsurface Science
        • Ecosystem Science
        • Coastal Science
      • Materials Science
        • Solid Phase Processing
        • Science of Interfaces
        • Precision Materials by Design
        • Materials in Extreme Environments
      • Nuclear & Particle Physics
        • Dark Matter
        • Neutrino Physics
        • Flavor Physics
        • Fusion Energy Science
      • Quantum Information Science
    • Energy Resiliency
      • Electric Grid Modernization
        • Distribution
        • Transmission
        • Grid Architecture
        • Grid Analytics
          • AGM Program
        • Grid Cybersecurity
        • Emergency Response
      • Energy Efficiency
        • Building Technologies
          • Building-Grid Integration
          • Advanced Lighting
        • Residential Buildings
          • Energy Efficient Technology Integration
          • Home Energy Score
          • Building America Solution Center
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Building Energy Codes
        • Appliance and Equipment Standards
      • Energy Storage
        • Grid Energy Storage
        • Vehicle Energy Storage
      • Environmental Management
        • Environmental Remediation
        • Waste Processing
        • Radiation Measurement
      • Fossil Energy
        • Subsurface Energy Systems
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Reactor Licensing
        • Reactor Operations
        • Fuel Cycle Research
        • Advanced Reactors
      • Renewable Energy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower and the Electric Grid
          • Hydropower Cybersecurity and Digitalization
          • Materials Science for Hydropower
          • Water + Hydropower Planning
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Wind Energy
          • Distributed Wind
          • Offshore Wind
          • Uncertainty Quantification
          • Wildlife and Wind
          • Wind Data Archive and Portal
          • Wind Resource Characterization
        • Geothermal Energy
        • Solar Energy
      • Transportation
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
    • National Security
      • Computing & Analytics
        • Artificial Intelligence
        • Computational Mathematics & Statistics
        • Graph and Data Analytics
        • High-Performance Computing
        • Software Engineering
        • Visual Analytics
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Nonproliferation
        • Stakeholder Engagement
        • Technical Training
      • Weapons of Mass Effect
        • Explosives Detection
        • Chemical & Biological Signatures Science
        • Radiological & Nuclear Detection
    • Lab Objectives
    • Publications & Reports
    • S&T Capabilities
  • People
    • Inventors
    • Diversity
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Academia
      • Distinguished Graduate Research Programs
      • Internships
      • Visiting Faculty Program
      • Joint Appointments
      • Joint Institutes
    • Community
      • STEM Education
      • Philanthropy
      • Volunteering
      • Economic Impact
    • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Bioproducts, Sciences, and Engineering Lab
      • Environmental Molecular Sciences Laboratory
      • Institute for Integrated Catalysis
      • Marine and Coastal Research Laboratory
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory
      • Systems Engineering Building
      • Wasteform Development Laboratory
      • PNNL Seattle Research Center
      • PNNL 5G Innovation Studio

Distributed Hydrology Soil Vegetation Model

  • FAQ
  • Tutorials and Datasets
    • Tutorial for DHSVM 2.0
    • Tutorial for DHSVM 3.0
    • Tutorial for DHSVM 3.1
  • Source Code
  • Data Products
  • Documentation
    • Tools
    • Model Operation
    • Model Input Files
    • Processing of Input Files
    • Model Output
  • Publications

Tutorial for DHSVM 3.0

In order to run the mass wasting option in the sediment model, the first step is to run the hydrological model with SEDIMENT option set FALSE. The hydrological run will output the file "saturation_extent.txt" (saturation extension) which is needed to run the sediment model and to define the specific events to be specified in the sediment control file. Then run DHSVM with SEDIMENT TRUE and Overland Routing KINEMATIC (instead of CONVENTIONAL) over the specified time periods. If you do not need the mass wasting option, you do not need to run DHSVM in 2 steps, just set SEDIMENT to TRUE from the start in the main control file.

Please check the input file processing section below for now.

  1. The GIS file processing (.bin files) is identical to 2.0.1 (same aml scripts, .c, etc).
  2. Use DHSVM 3.0 templates for the files that you had to edit manually before (stream.class.dat, road.class.dat, configuration files). Those are available in the input files processing section below.
  3. If you use the sediment option, you might need an additional DEM (higher resolution DEM). Just process it the same way you did for the other one. Rainy Creek 10 meter DEM to be used by the sediment option isĀ available here.

As a test, you can find all the input files and output files as run in our lab.

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • Twitter
  • Instagram
  • LinkedIn