Biogeochemical activity in the hyporheic zone (HZ), sediments where the flowing waters of a river mix with shallow groundwater, supports many of the biological processes that occur within a watershed.
Co-authors of a paper in Hydrological Processes led by PNNL researchers Zhangshuan Hou, Timothy Scheibe, and Christopher Murray, produced a map that identifies different classes of sediments which compose the riverbed along the Hanford ...
A multi-institutional team of scientists developed a new sensitivity analysis framework using Bayesian Networks to quantify which parameters and processes in complex multi-physics models are least understood.
Reactive transport models (RTMs) are used to describe and predict the distribution of chemicals in time and space, in both marine and terrestrial (surface and near-surface) environments where microbially-mediated processes govern...
Hydrologic exchange flows (HEFs) increase the contact between river water and subsurface sediments thereby playing a critical role in biogeochemical and ecological functions along river corridors.
Hydrologic exchange fluxes (HEFs) between rivers and surrounding subsurface environments strongly influence water temperatures and biogeochemical processes. Yet, quantitative measures of their effects on the strength and direction of such e
Scientists at PNNL's Center for Molecular Electrocatalysis (CME) are working to understand the fundamental reactivity of H2 that could contribute to making hydrogen a more widely used fuel source.
Dr. Morris Bullock and Dr. Monte Helm reviewed the catalysis research at the Center for Molecular Electrocatalysis, where Bullock is the director, in a recent article in Accounts of Chemical Research.
Generating power without gasoline, diesel, or coal could change our nation's energy and security landscape. However, replacing technologies that use fossil fuel with ones that require rare metals is unsustainable.
Making hydrogen economically demands a quick, efficient reaction. Creating that reaction demands a catalyst. CME scientists found that a proton and water-packed environment lets the catalyst work 50 times faster—without added energy.
Quickly, reliably turning wind energy into fuel means looking beyond the catalyst to its foundation, according to a recent study from the Center for Molecular Electrocatalysis.
At PNNL, scientists have elaborated on a strategy to map the catalytic route. Scientists can now explore design decisions with molecular catalysts that store or release energy from the chemical bond in dihydrogen (H2).
Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at PNNL and Villanova University.
In an invited ACS Catalysis Viewpoint paper, scientists at PNNL proposed a way to measure and report the energy efficiency of molecular electrocatalysts.
Scientists at the Center for Molecular Electrocatalysis (CME) devised a new computation-based method to predict the catalytic intermediates that could represent a thermodynamic sink.
Taking a cue from enzymes, researchers at PNNL placed the amino acid arginine at the periphery of a hydrogen-splitting catalyst that cleaves hydrogen into protons and electrons.