A research team from Pacific Northwest National Laboratory developed an apparatus that evaluates the performance of high-temperature fluids in hydraulic fracturing for enhanced geothermal systems.
Magazine cover article—“Combating corrosion in the world’s nuclear reactors”—features PNNL research leaders Mark Nutt, Aaron Diaz, and Mychailo Toloczko.
An international team used PNNL microscopy to answer questions about how uranium dioxide—used in nuclear power plants—might behave in long-term storage.
Deepika Malhotra, an organic chemist at PNNL, will lend her expertise to help shape the content and quality of Pollutants a new, interdisciplinary, open access, journal focusing on a range of environmental science research.
Researchers have identified two processes responsible for fracturing rock at lower pressures for geothermal energy production using PNNL’s fracturing fluid, StimuFrac™.
The Soil Science Society of America presents Nik Qafoku with the 2019 Jackson Award for contributions in soil chemistry and mineralogy—ranging from agricultural fertilizer efficiency in Albania to soil contaminant transport at Hanford.
Researchers at PNNL are developing a new class of acoustically active nanomaterials designed to improve the high-resolution tracking of exploratory fluids injected into the subsurface. These could improve subsurface geophysical monitoring.
Steve Short, a nuclear engineer at Pacific Northwest National Laboratory, has been selected as a fellow of the National Society of Professional Engineers.
On October 22, the U.S. Nuclear Regulatory Commission (NRC)granted Tennessee Valley Authority's (TVA's) Watts Bar Nuclear Generating Station a 40-year operating license for its new Unit 2 reactor. This is the first nuclear reactor to be granted an operating license by the NRC in two decades.
Pressurized water nuclear reactors in the United States generate about 13 percent of U.S. electricity. Though efficient, these reactors face a unique challenge with stress corrosion cracking (SCC). This type of corrosion is one of the primary life-limiting degradation mechanisms of nickel-base alloy pressure boundary components, such as instrumentation and control rod nozzles, the welds that attach these nozzles to the reactor vessel, and welds that connect feedwater piping to the reactor vessel. As interest grows in a more sustainable and efficient fleet of nuclear reactors across the world, there is increasing interest in characterizing SCC initiation response.