Controlling the nanostructure of silk fibroin—a protein found in silk—is a key step toward designing and fabricating electronics that leverage the material’s promising mechanical, optical and biocompatible properties.
PNNL’s patented Shear Assisted Processing and Extrusion (ShAPE™) technique is an advanced manufacturing technology that enables better-performing materials and components while offering opportunities to reduce costs and energy consumption.
Twenty years after the first radiation portal monitor was installed, PNNL continues supporting the Department of Homeland Security’s efforts to detect and prevent terrorist weapons from crossing our borders.
PNNL’s expertise is the foundation for monitoring technology that identifies trace amounts of radioactive materials and determines whether they are indicative of a nuclear explosion.
Peering through the thick, green glass of a decades-old "hot cell," an expert technician manipulates robotic arms to study highly radioactive waste from Hanford, in support of ongoing cleanup.
Imagine a hollow tube thousands of times smaller than a human hair. Now envision filthy water flowing through an array of such tubes, each designed to capture contaminants on the inside, with clean water emerging at the other end.
This time of year finds many of us busy with holiday shopping. While PNNL might not be developing the latest video games or hoverboards, we are working hard to deliver a few presents you might like.
Cleaning up Hanford is no easy task: it is one of the world's largest and most complex environmental remediation projects. The nation's top engineering firms are on the job and the Department of Energy's PNNL is helping.
PNNL takes pride in advancing scientific frontiers and developing solutions to vexing problems. In particular, we apply our technical expertise to address national needs in security, energy and the environment.