Researchers found that in a future where the Great Plains are 4 to 6 degrees Celsius (°C) warmer as projected in a high-emission scenario, these storms could bring three times more intense rainfall.
The study found that the way a fire burns (in open air versus in an oven in a controlled lab setting) can greatly change the leftover materials (char or charcoal) and how they interact in the environment.
Recycling polyolefin materials is challenging. One waste management strategy is plastic upcycling. New work demonstrates a single-step upcycling route coupling cracking and alkylation, recycling carbon and keeping valuable resources active.
A new study uses direct numerical simulations to develop a near-surface turbulence model for thermal convection using interpretable and physics-aware neural networks, broadening the applications of numerical simulations.
A PNNL study developed a water management module for Xanthos that distinguishes between the operational characteristics of hydropower, irrigation, and flood control reservoirs.
The Earth System Model Aerosol–Cloud Diagnostics package version 2 uses aircraft, ship, ground, and satellite measurements to evaluate detailed physical processes in aerosols, clouds, and aerosol–cloud interactions.
PNNL’s Center for the Remediation of Complex Sites convened attendees from around the world to discuss challenges associated with environmental contamination.