Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
        • Predictive Phenomics
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Global Change
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Solid Phase Processing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Flavor Physics
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Energy Resiliency
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Grid Resilience and Decarbonization
          • Earth System Modeling
          • Energy System Modeling
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Grid Resilience and Decarbonization
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Wind Resource Characterization
          • Wildlife and Wind
          • Community Values and Ocean Co-Use
          • Wind Systems Integration
          • Wind Data Management
          • Distributed Wind
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Grid Resilience and Decarbonization
        • Internet of Things
        • Maritime Security
        • Millimeter Wave
        • Mission Risk and Resilience
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • Future Computing Technologies
        • Adaptive Autonomous Systems
      • Visual Analytics
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Education
      • Undergraduate Students
      • Graduate Students
      • Post-graduate Students
      • University Faculty
      • University Partnerships
      • K-12 Educators and Students
      • STEM Education
        • STEM Workforce Development
        • STEM Outreach
        • Meet the Team
      • Internships
    • Community
      • Regional Impact
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
      • Visual Intellectual Property Search (VIPS)
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Portland Research Center
      • PNNL Seattle Research Center
      • PNNL-Sequim (Marine and Coastal Research)
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

DMC

  • Leadership
  • Projects
    • Converged Applications
    • Heterogenous Computing
  • Publications
  • Software
  • About

Breadcrumb

  1. Home
  2. Projects
  3. DMC

Publications

Converged Applications

Exploration of Domain-Aware Machine Learning for Grid Analytics (DAML-GA) – M Halappanavar

Conference Proceedings:

2021

Jain M., K. Gupta, A. Visweswara Sathanur, V. Chandan, and M. Halappanavar. 2021. "Transfer-Learnt Energy Models for Predicting Electricity Consumption in Buildings with Limited and Sparse Field Data." In American Control Conference (ACC 2021), May 25-28, 2021, New Orleans, LA, 2887-2894. Piscataway, New Jersey: IEEE. PNNL-SA-156692. doi:10.23919/ACC50511.2021.9483228

Presentations:

2020

Gupta K., M. Jain, A. Visweswara Sathanur, V. Chandan, and M. Halappanavar. 2020. "Learn from One, Apply to Many: Knowledge Transfer for Building Controls." Presented by M. Jain at Post Doctorate Symposium, Pacific Northwest National Laboratory, Richland, Washington. PNNL-SA-155770.

Other:

2020

Tumeo A., M. Halappanavar, J.T. Feo, and F. Petrini. 2020. "Introduction to the TOPC Special issue on Innovations in Systems for Irregular Applications – Part II." Pacific Northwest National Laboratory, Richland, Washington. PNNL-SA-155627. (This document introduces the Special issue on Innovations in Systems for Irregular Applications of the ACM Transactions on Parallel Computing)

Data-Model Convergence Application Flows – D Vrabie

Publications:

2019

Abhyankar S.G., S. Peles, and D.L. Vrabie. 2019. Power Grid Computational Challenges and Metrics for Hardware Accelerator Evaluation. Pacific Northwest National Laboratory, Richland, Washington. PNNL-29301.

Poster:

2019

Vrabie D.L. 2019. "DMC Application Challenges." Pacific Northwest National Laboratory, Richland, Washington. PNNL-SA-143678.

Holonic Approach toward Data-Model Convergence – S Choudhury

Publications:

2022

Nandanoori S., S. Guan, S. Kundu, S. Pal, K. Agarwal, Y. Wu, and S. Choudhury. 2022. "Graph Neural Network and Koopman Models for Learning Networked Dynamics: A Comparative Study on Power Grid Transients Prediction." IEEE Access 10. PNNL-SA-161313. doi:10.1109/ACCESS.2022.3160710

Conference Proceedings:

2021

Ahmed A., K.S. Sajan, A.K. Srivastava, and Y. Wu. 2021. "Anomaly Detection, Localization and Classification using Drifting Synchrophasor Data Streams." IEEE Transactions on Smart Grid. PNNL-SA-159464. doi:10.1109/TSG.2021.3054375.

Guan S., H. Ma, S. Choudhury, and Y. Wu. 2021. "GEDet: Detecting Erroneous Nodes with A Few Examples." In Proceedings of the 47th International Conference on Very Large Data Bases (VLDB 2021), August 16-20, 2021, Virtual, Online, 14, 2875 - 2878. PNNL-SA-160866.  doi:10.14778/3476311.3476367

2020

Guan S., P. Lin, H. Ma, Y. Wu. 2020. ”GEDet: Adversarially Learned Few-shot Detection of Erroneous Nodes in Graphs.” In IEEE International Conference on Big Data (Best Paper Award)

Nandanoori S., S. Kundu, S. Pal, K. Agarwal, and S. Choudhury. 2020. "Model-Agnostic Algorithm for Real-Time Attack Identification in Power Grid using Koopman Modes." In IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids. PNNL-SA-154191. doi:10.1109/SmartGridComm47815.2020.9303022

Theory-Driven Reinforcement Learning: Understanding Complexity in Protein Dynamics - B Cannon

Publications:

2023

King E., J.T. Holzer, J.A. North, and W.R. Cannon. 2023. "An Approach to Learn Regulation to Maximize Growth and Entropy Production Rates in Metabolism." Frontiers in Systems Biology 3. PNNL-SA-170735. doi:10.3389/fsysb.2023.981866

Presentations:

2023

Cannon W.R. 03/14/2023. "Learning Control of Chemical Reaction Networks and Predicting their Emergent Properties." Richland, Washington. PNNL-SA-182802.

King E. 03/07/2023. "Predicting Cellular Regulation by Combining Statistical Thermodynamics, Control Theory, and Learning." Presented by E. King at American Physical Society March Meeting 2023, Las Vegas, Nevada. PNNL-SA-182592.

Software and Data Releases:

Pathway controlled optimization: https://github.com/pnnl/pathway_controlled_optimization

Synergistic Activities:

2023

W. R. Cannon, Steering Committee, NIH-NSF-DOE Interagency Multiscale Modeling Consortium. 

W. R. Cannon, Session Organizer, Non Equilibrium Thermodynamics: From Chemical Reaction Networks to Natural Selection, American Physical Society March Meeting, 2023.

2022

Cannon W.R. 05/17/2022. "Slides/Lecture for UC Riverside class." Presented by W.R. Cannon at UC Riverside class, Zoom, California. PNNL-SA-173081.

W. R. Cannon, Session Organizer, Non Equilibrium Thermodynamics: From Chemical Reaction Networks to Natural Selection, American Physical Society March Meeting, 2022.

2021

Cannon, W. R., Conference Co-Organizer: Annual Meeting of the Society for Mathematical Biology, June 13-17, 2021. Virtual, http://smb2021.org

W. R. Cannon, Session Organizer, Non Equilibrium Thermodynamics: From Chemical Reaction Networks to Natural Selection, American Physical Society March Meeting, 2021.

Cannon, W. R., Co-Organizer, AAAS Session: Coupled Experimental and Multiscale Modeling Study of the Environmental Microbiome, Annual Meeting of the American Association for the Advancement of Science (AAAS), February 8, 2021, Virtual.

Causal Inference and ML Methods for MIP Analysis of Security Constrained Unit (SCY0) Commitment – J Holzer, J Zucker

Publications:

2024

Holzer J., J. Cottam, J. Li, C. Xie, G. Kestor, J. Zucker, and F. Pan. 2024. "Testing and Accelerating Computational Kernels for Fast Evaluation of Security Constraints with Contingencies on Multiple Branches." IEEE Transactions on Power Systems [under review 2024]. PNNL-SA-206377. doi:10.36227/techrxiv.173386277.78847129/v1

2023

King E., J.T. Holzer, J.A. North, and W.R. Cannon. 2023. "An Approach to Learn Regulation to Maximize Growth and Entropy Production Rates in Metabolism." Frontiers in Systems Biology 3. PNNL-SA-170735. doi:10.3389/fsysb.2023.981866

2022

Mohammad-Taheri S., J.D. Zucker, C.T. Hoyt, K. Sachs, V. Tewari, R. Ness, and O. Vitek. 2022. "Do-calculus enables estimation of causal effects in partially observed biomolecular pathways." Bioinformatics 38, no. Supplement_1:i350-i358. PNNL-SA-172208. doi:10.1093/bioinformatics/btac251

2021

Amin N., W. Byrd, J.A. Cottam, M. Parent, and J.D. Zucker. 10/20/2021. "A Pearl Pearl, or How to teach a good old-fashioned AI new tricks." Presented by J.D. Zucker at ProbProg 2021, Online Conference, United States. PNNL-SA-167618.

Bingham E., J. Koppel, A. Lew, R. Ness, Z. Tavares, S. Witty, and J.D. Zucker. 10/20/2021. "Causal Probabilistic Programing Without Tears." Presented by J.D. Zucker at ProbProg 2021, Online Conference, United States. PNNL-SA-167619.

Byrd W., G. Rosenblatt, M.J. Patton, T.K. Tran-Nguyen, J.D. Zucker, J.A. Cottam, and N. Amin. 2021. "Medikanren: a System for Biomedical Reasoning." In miniKanren 20: 2nd Annual miniKanren and Relational Programming Workshop. PNNL-SA-159519.

Kohler D., J.D. Zucker, V. Tewari, K. Sachs, R. Ness, and O. Vitek. 10/20/2021. "Explorations of causal probabilistic programming approaches for rule-based models of biological signaling pathways." Presented by J.D. Zucker at ProbProg 2021, Online Conference, United States. PNNL-SA-167588.

Presentations:

2021

Bingham E., J. Koppel, A. Lew, Z. Tavares, R. Ness, S. Witty, and J.D. Zucker. 10/20/2021. "Causal Probabilistic Programing Without Tears (Presentation)." Presented by S. Witty at ProbProg 2021, Online Conference, United States. PNNL-SA-167982.

Holzer J., J. Zucker, X. Lin, J. Cottam, F. Pan, A. Campbell, C. Joslyn, Z. Weems, Z. Hou. 2021. “SCY0: Causal inference and machine learning applications to SCUC” Physics Informed Machine Learning Workshop.

Holzer J., J. Zucker. 2021. “SCY0  Security constrained evaluation”, DMC Co-Design Workshop.

Zucker J.D. 11/04/2021. "Leveraging Structured Biological Knowledge for Counterfactual Inference: a Case Study of Viral Pathogenesis." Presented by J.D. Zucker at Western Washington Data-Driven Seminar Series, Online Conference, United States. PNNL-SA-168167.

2020

Holzer J.T., F. Pan, Y. Chen, and J.D. Zucker. 2020. "Fast evaluation and statistical analysis of security constraints in security constrained unit commitment." Presented by J.T. Holzer at INFORMS Annual Meeting 2020, Online Conference, United States. PNNL-SA-157685.

Internal Presentations:
2021

Cottam, J., J. Zucker. “The Y0 Causal Inference Engine” PNNL TechFest, June 21, 2021

Holzer J., J. Zucker. “SCY0  Security constraint evaluation” DMC Co-Design Workshop at PNNL, March 3, 2021

Holzer J., J. Zucker, X. Lin, J. Cottam, F. Pan, A. Campbell, C. Joslyn, Z. Weems, Z. Hou. “SCY0: Causal inference and machine learning applications to SCUC” Physics Informed Machine Learning Workshop at PNNL, February 16, 2021

IP Generation:

Co-design of Bayesian Inference Algorithms: https://gitlab.pnnl.gov/y0-scuc/dmc-hmc

SCUC Simulation, Data Generation, Training/Testing Pipeline: https://gitlab.pnnl.gov/y0-scuc/xavier-2019

SCUC Simulation and Security Constraint Evaluation Code: https://gitlab.pnnl.gov/y0-scuc

Y0 Causal Inference Engine: https://github.com/y0-causal-inference/y0

PACER – S Ghosh

Publications:

2022

Lee H., M. Jain, and S. Ghosh. 2022. "Sparse Deep Neural Network Inference using different Programming Models." In 2022 IEEE High Performance Extreme Computing. PNNL-SA-175380. doi:10.1109/HPEC55821.2022.9926362

Conference Proceedings:

2022

Chou H., and S. Ghosh. 2022. "Batched Graph Clustering on GPUs." In 31st International Conference on Parallel Architectures and Compilation Techniques (PACT). PNNL-SA-167802. https://doi.org/10.1145/3559009.3569655

Lee H., M. Jain, and S. Ghosh. 2022. "Sparse Deep Neural Network Inference using different Programming Models." In 2022 IEEE High Performance Extreme Computing. PNNL-SA-175380. doi:10.1109/HPEC55821.2022.9926362

Ghosh S. 2022. "Improved Distributed-memory Triangle Counting by Exploiting the Graph Structure." In IEEE High Performance Extreme Computing Conference (HPEC 2022), September 19-23, 2022, Virtual, Online, 1-6. Piscataway, New Jersey: IEEE. PNNL-SA-175362. doi:10.1109/HPEC55821.2022.9926376

Ghosh S., N.R. Tallent, and M. Halappanavar. 2022. "Characterizing Performance of Graph Neighborhood Communication Patterns." IEEE Transactions on Parallel and Distributed Systems 33, no. 4:915-928. PNNL-SA-152879. doi:10.1109/TPDS.2021.3101425

Jain M., S. Ghosh, and S. Nandanoori. 2022. "Workload Characterization of a Time Series Prediction System for Spatial-Temporal Data." In 19th ACM International Conference on Computing Frontiers. May 2022. New York, NY, USA, New York: Association for Computing Machinery. PNNL-SA-165281. doi:10.1145/3528416.3530242

2021

Ghosh S., A. Lumsdaine, C. Alsobrooks, M. Ruefenacht, A. Skjellum, and P.V. Bangalore. 2021. "Towards Modern C++ Language Bindings to MPI." In ExaMPI21: Workshop on Exascale MPI. PNNL-SA-166316. https://doi.org/10.1109/ExaMPI54564.2021.00009

Ghosh S., N.R. Tallent, M. Minutoli, M. Halappanavar, R. Peri, and A. Kalyanaraman. 2021. "Single-node Partitioned-Memory for Huge Graph Analytics: Cost and Performance Trade-offs." In Proceedings of the International Conference for High Performance Computing, Network, Storage and Analysis (SC 2021), November 14-19, 2021, Virtual, Online, Art. No. 55. New York, New York:Association for Computing Machinery. PNNL-SA-161359. doi:10.1145/3458817.3476156

Ghosh S., Y. Guo, P. Balaji, and A. Gebremedhin. 2021. "RMACXX: An Efficient High-Level C++ Interface over MPI-3 RMA." In Proceedings of the 21st IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2021), May 10-13, 2021, Virtual, 143-155. Piscataway, New Jersey: IEEE. PNNL-SA-158770. doi:10.1109/CCGrid51090.2021.00024

Domain Aware Deep-learning Algorithms Integrated with Scientific-computing Technologies (DADAIST) – J Drgona

Publications:

2023

Koch J.V., Z. Chen, A.R. Tuor, J. Drgona, and D.L. Vrabie. 2023. "Structural Inference of Networked Dynamical Systems with Universal Differential Equations." Chaos: An Interdisciplinary Journal of Nonlinear Science 33, no. 2:023103. PNNL-SA-174936. doi:10.1063/5.0109093

Legaard C.M., T. Schranz, G. Schweiger, J. Drgona, B. Falay, C. Gomes, and A. Iosifidis, et al. 2023. "Constructing Neural Network-Based Models for Simulating Dynamical Systems." ACM Computing Surveys 55, no. 11:Art. No. 236. PNNL-SA-168499. doi:10.1145/3567591

Li S., J. Drgona, S.G. Abhyankar, and L. Pileggi. 2023. "Power Grid Behavioral Patterns and Risks of Generalization in Applied Machine Learning." In International Workshop on Applied Machine Learning for Intelligent Energy Systems (AMLIES). PNNL-SA-184952. arXiv preprint arXiv:2304.10702

Li S., J. Drgona, A.R. Tuor, L. Pileggi, D.L Vrabie. 2023. "Homotopy Learning of Parametric Solutions to Constrained Optimization Problems", preprint.

Presentations: 

2023

Drgona J. 04/18/2023. "Differentiable Programming for Modeling and Control of Dynamical Systems." Abstract submitted to Artificial Intelligence for Robust Engineering and Science Workshop (AIRES 4), Oak Ridge, Tennessee. PNNL-SA-181435.

Drgona J., A.R. Tuor, J.V. Koch, S.E. Dernbach, Z. Chen, S.G. Abhyankar, and E. King, et al. 01/12/2023. "Differentiable programming for modeling and control of energy systems." Presented by J. Drgona at 2023 Grid Science Winter School and Conference, Santa Fe, Nm, New Mexico. PNNL-SA-181241.

Koch J.V., Z. Chen, S.E. Dernbach, J. Drgona, A.R. Tuor, and D.L. Vrabie. 03/28/2023. "Structural Inference of Networked Dynamical Systems with Universal Differential Equations." Presented by J.V. Koch at AAAI Spring Symposium - Computational Approaches to Scientific Discovery, San Francisco, California. PNNL-SA-183163.

Koch J.V., Z. Chen, A.R. Tuor, J. Drgona, and D.L. Vrabie. 02/21/2023. "Structural Inference of Networked Dynamical Systems with Universal Differential Equations." Presented by J.V. Koch at Differential Equations for Data Science 2023, Online Conference, Japan. PNNL-SA-182036.

2022

Drgona J., A.R. Tuor, J.V. Koch, S.G. Abhyankar, E. King, Z. Chen, and S.S. Vasisht, et al. 10/21/2022. "Differentiable programming for modeling and control of dynamical systems." Presented by J. Drgona at Applied Math Colloquium at the University of Arizona, Tucson, Arizona. PNNL-SA-179095.

Drgona J., A.R. Tuor, D.L. Vrabie, J.V. Koch, Z. Chen, E. King, and S.G. Abhyankar, et al. 11/07/2022. "Differentiable programming for modeling and control of energy systems." Presented by J. Drgona at IEEE 8th World Forum on Internet of Things Yokohama, Japan, Online Conference, Washington. PNNL-SA-179703.

Drgona J., A.R. Tuor, D.L. Vrabie, J.V. Koch, E. King, S. Mukherjee, and W.E. Shaw Cortez, et al. 12/16/2022. "Differentiable programming for modeling and control of dynamical systems." Presented by J. Drgona at Invited Talk at COEP Tech University, Pune, "Online Conference", Washington. PNNL-SA-180734.

Conference Proceedings:

2022

King E., J. Drgona, A.R. Tuor, S.G. Abhyankar, C. Bakker, A. Bhattacharya, and D.L. Vrabie. 2022. "Koopman-based Differentiable Predictive Control for the Dynamics-Aware Economic Dispatch Problem." In American Control Conference (ACC 2022), June 8-10, 2022, Atlanta, GA, 2194-2201. Piscataway, New Jersey: IEEE. PNNL-SA-167421. doi:10.23919/ACC53348.2022.9867379

Software and Data Releases:

Contributions to 1.3 release of Neuromancer https://github.com/pnnl/neuromancer

Synergistic Activities:

2023

Drgona J. Co-Organizer, International Workshop on Applied Machine Learning for Intelligent Energy Systems (AMLIES), ACM e-Energy Conference, 2023. https://sinberbest.berkeley.edu/amlies/2023

Drgona J. Organizer, ACC Workshop on Differentiable Programming for Modeling and Control of Dynamical Systems, 2023 American Control Conference (ACC), 2023. https://d-biswa.github.io/Differentiable-SysCon/

2022

Drgona J. Co-Organizer, NeurIPS 2022 Workshop: Tackling Climate Change with Machine Learning, Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS), 2022. https://www.climatechange.ai/events/neurips2022

Drgona J. Co-Organizer, Third ACM SIGEnergy Workshop on Reinforcement Learning for Energy Management in Buildings & Cities (RLEM), 9th ACM International Conference on Systems for Energy-Efficient Built Environments (BuildSys 2022), 2022. https://rlem-workshop.net/

Heterogeneous Computing

Transfer Learning for Building Energy Modeling (TransBeam) – M Jain, K Gupta, A Visweswara Sathanur, V Chandan, M Halappanavar

Presentations:

2021

Jain M., K. Gupta, A. Visweswara Sathanur, V. Chandan, and M. Halappanavar. 2021. "Transfer-Learnt Models for Predicting Electricity Consumption in Buildings with Limited and Sparse Field Data." Presented by M. Jain at ACC 2021, Virtual, Washington. PNNL-SA-161496.

IP Generation:

Invention Releases

IPID: 32167 - TransBeam Software

Open Source

Software and Data Releases:

TransBeam: https://github.com/jainmilan/transBEAM

Hybrid Advanced Workflows (HAW) – VG Castellana

Conference Proceedings:

2022

Ashraf R.A., and R. Gioiosa. 2022. "Exploring the Use of Novel Spatial Accelerators in Scientific Applications." In Proceedings of the ACM/SPEC International Conference on Performance Engineering (ICPE 2022), April 9-13, 2022, Beijing, China, 47-58. New York, New York: Association for Computing Machinery. PNNL-SA-169884.  doi:10.1145/3489525.3511690

Wu N., V.G. Castellana, and H. Kaiser. 2022. "Towards Superior Software Portability with SHAD and HPX C++ Libraries." In Proceedings of the 19th ACM International Conference on Computing Frontiers (CF 2022), May 17-19, 2022, Turin, Italy, 251-257. New York, New York: Association for Computing Machinery. PNNL-SA-171823.  doi:10.1145/3528416.3530784

2021

Castellana V.G., and M. Minutoli. 2021. "Productive Programming of Distributed Systems with the SHAD C++ Library." In Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing (HPDC '21), June 21-25, 2021, Virtual, Online, 263 -264. New York, New York: Association for Computing Machinery. PNNL-SA-162110.  doi:10.1145/3431379.3462765

2020

Azad M., M.M. Aznaveh, S. Beamer, M. Blanco, J. Chen, L. D'Alessandro, and R. Dathathri, et al. 2020. "Evaluation of Graph Analytics Frameworks Using the GAP Benchmark Suite." In IEEE International Symposium on Workload Characterization (IISWC 2020), October 27-30, 2020, Beijing, China, 216-227. Piscataway, New Jersey: IEEE. PNNL-SA-154466. doi:10.1109/IISWC50251.2020.00029

Drocco M., V.G. Castellana, and M. Minutoli. 2020. "Practical Distributed Programming in C++." In Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, June 23-26, 2020, Stockholm, Sweden, 35-39. New York, New York: Association for Computing Machinery. PNNL-SA-143911.  doi:10.1145/3369583.3392680

Gioiosa R., B. Mutlu, S. Lee, J.S. Vetter, G. Picierro, and M. Cesati. 2020. "The Minos Computing Library: Efficient Parallel Programming for Extremely Heterogeneous Systems." In Proceedings of the 13th Workshop on General Purpose Processing Using GPU, February 23, 2020, San Diego, CA. Association for Computing Machinery. New York, New York. PNNL-SA-150725. doi:10.1145/3366428.3380770

Kamatar A.V., R.D. Friese, and R. Gioiosa. 2020. "Locality-Aware Scheduling for Scalable Heterogeneous Environments." In IEEE/ACM International Workshop on Runtime and Operating Systems for Supercomputers (ROSS 2020), November 13, 2020, Virtual Event, 50-58. Los Alamitos, California: IEEE Computer Society. PNNL-SA-157073.  doi:10.1109/ROSS51935.2020.00011

Presentations:

2020

Castellana V.G. 2020. "Hybrid Advanced Workflows." Presented by V.G. Castellana at University of Utah Lightning Talks. Richland, Washington. PNNL-SA-153119.

Castellana V.G., M. Drocco, M. Minutoli, and J.T. Feo. 2020. "SHAD P3HPC." Presented by V.G. Castellana at P3HPC Workshop. Online Conference, United States. PNNL-SA-155911.

Feo J.T., and V.G. Castellana. 2020. "Analyzing Network of Networks at Scale." Presented by J.T. Feo at Chesapeake Large Scale Analytics Conference. Virtual, Washington. PNNL-SA-156999.

Lumsdaine, A. 2020. “Graph Data Structures.” Presented by Vito Castellana at Winter 20 C++ Standard Meeting. Prague, Czech Republic.

2019

Castellana V. 2019. “Practical Distributed C++ Programming with SHAD.” CLSAC 19 International Conference. Annapolis, MD, USA.

Drocco M., V.G. Castellana, and M. Minutoli. 2019. "Practical Distributed Programming in C++." Richland, Washington. PNNL-SA-143913.

IP Generation:

Invention Releases

IR: 31846 - SHADES: The SHAD Exploration System

Open Source (also featured on DOE code software center)

Software and Data Releases:

SHAD: https://github.com/pnnl/shad

SHADES: https://github.com/pnnl/shades

MCL: https://github.com/pnnl/MCL

Software-Defined Architecture for Data Analysis (SO(DA)2) – A Tumeo

Publications:

2022

Curzel S., N. Bohm Agostini, V.G. Castellana, M. Minutoli, A.M. Limaye, J.B. Manzano Franco, and J. Zhang, et al. 2022. "End-to-end Synthesis of Dynamically Controlled Machine Learning Accelerators." IEEE Transactions on Computers 71, no. 12:3074 - 3087. PNNL-SA-169650. doi:10.1109/TC.2022.3211430

2021

Tan C., C. Xie, T. Geng, A. Marquez, A. Tumeo, K.J. Barker, and A. Li. 2021. "ARENA: Asynchronous Reconfigurable Accelerator Ring to Enable Data-Centric Parallel Computing." IEEE Transactions on Parallel and Distributed Systems 32, no. 12:2880-2892. PNNL-SA-152862. doi:10.1109/TPDS.2021.3081074

Wang X., A. Tumeo, J.D. Leidel, J. Li, and Y. Chen. 2021. "HAM: Hotspot-Aware Manager for Improving Communications with 3D-Stacked Memory." IEEE Transactions on Computers 70, no. 6:833 - 848. PNNL-SA-161294. doi:10.1109/TC.2021.3066982

Conference Proceedings:

2022

Bohm Agostini N., S. Curzel, A.M. Limaye, V.C. Amatya, M. Minutoli, V.G. Castellana, and J.B. Manzano Franco, et al. 2022. "The SODA Approach: Leveraging High-Level Synthesis for Hardware/Software Co-design and Hardware Specialization: Invited." In Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC 2022), July 10-14, 2022, San Francisco, CA, 1359-1362. New York, New York: Association for Computing Machinery. PNNL-SA-172445.  doi:10.1145/3489517.3530628

Tan C., N. Bohm Agostini, T. Geng, C. Xie, J. Li, A. Li, and K.J. Barker, et al. 2022. "DRIPS: Dynamic Rebalancing of Pipelined Streaming Applications on CGRAs." In IEEE International Symposium on High-Performance Computer Architecture (HPCA 2022), April 2-6, 2022, Seoul, Korea, 304-316. Piscataway, New Jersey: IEEE. PNNL-SA-165149.  doi:10.1109/HPCA53966.2022.00030

Tan C., T. Tambe, J. Zhang, B. Fang, T. Geng, G. Wei, and D. Brooks, et al. 2022. "ASAP: Automatic Synthesis of Area-Efficient and Precision-Aware CGRAs." In Proceedings of the 36th ACM International Conference on Supercomputing (ICS 2022), June 28-30, 2022, Virtual, Online, Paper No. 4. New York, New York: Association for Computing Machinery. PNNL-SA-172791. doi:10.1145/3524059.3532359

2021

Castellana V.G., A. Tumeo, and F. Ferrandi. 2021. "High-Level Synthesis of Parallel Specifications Coupling Static and Dynamic Controllers." In IEEE International Parallel & Distributed Processing Symposium (IPDPS 2021), May 17-21, 2021, Virtual, Online, Paper No. 9460500. Piscataway, New Jersey: IEEE. PNNL-SA-157406. doi:10.1109/IPDPS49936.2021.00028

Curzel S., N. Bohm Agostini, S. Song, I. Dagli, A.M. Limaye, C. Tan, and M. Minutoli, et al. 2021. "Automated Generation of Integrated Digital and Spiking Neuromorphic Machine Learning Accelerators." In IEEE/ACM International Conference On Computer Aided Design (ICCAD 2021), November 1-4, 2021, Munich, Germany, 1-7. Piscataway, New Jersey: IEEE. PNNL-SA-166239.  doi:10.1109/ICCAD51958.2021.9643474

Ferrandi F., V.G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lattuada, and M. Minutoli, et al. 2021. "Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of Complex Applications." In 58th ACM/IEEE Design Automation Conference (DAC 2021), December 5-9, 2021, San Francisco, CA, 1327-1330. Piscataway, New Jersey: IEEE. PNNL-SA-160619. doi:10.1109/DAC18074.2021.9586110

Tan C., T. Geng, C. Xie, N. Bohm Agostini, J. Li, A. Li, and K.J. Barker, et al. 2021. "DynPaC: Coarse-Grained, Dynamic, and Partially Reconfigurable Array for Streaming Applications." In IEEE 39th International Conference on Computer Design (ICCD 2021), October 24-27, 2021, Virtual, Online, 33-40. Piscataway, New Jersey: IEEE. PNNL-SA-163151.  doi:10.1109/ICCD53106.2021.00018

Tan C., C. Xie, A. Li, K.J. Barker, and A. Tumeo. 2021. "AURORA: Automated Refinement of Coarse-Grained Reconfigurable Accelerators." In Design Automation and Test In Europe (DATE 2021), February 1-5, 2021, Virtual, Online, 2021, 1388 - 1393; Paper No. 9473955. Piscataway, New Jersey: IEEE. PNNL-SA-156552. doi:10.23919/DATE51398.2021.9473955

2020

Geng T., A. Li, R. Shi, C. Wu, T. Wang, Y. Li, and P. Haghi, et al. 2020. "AWB-GCN: A Graph Convolutional Network Accelerator with Runtime Workload Rebalancing." In Proceedings 53rd IEEE/ACM International Symposium on Microarchitecture (MICRO), October 17-21, 2020, Athens, Greece, 922-936. Piscataway, New Jersey: IEEE. PNNL-SA-146537.  doi:10.1109/MICRO50266.2020.00079

Limaye A., A. Tumeo, T. Adegbija. 2020. "Energy Characterization of Graph Workloads". In Journal of Sustainable Computing: Informatics and Systems - Journal publication for the International Green Computing Symposium. PNNL-SA-144164

Minutoli M., V.G. Castellana, C. Tan, J. Manzano, V. Amatya, A. Tumeo, D. Brooks, G.-Y. Wei. 2020. "SODA: a New Synthesis Infrastructure for Agile Hardware Design of Machine Learning Accelerators”, Invited paper. In ICCAD 2020: the 39th International Conference on Computer-Aided Design. Pages 1–7 - PNNL-SA-155356

Minutoli M., M. Drocco, M. Halappanavar, A. Tumeo, A. Kalyanaraman. 2020. "cuRipples: Influence Maximization on Multi-GPU Systems”. In ICS 2020: International Conference on  SuperComputing. Article No.: 12 Pages 1–11* PNNL-SA-148460

Minutoli M., P. Sambaturu, M. Halappanavar, A. Tumeo, A. Kalyanaraman, and A.K. Vullinati. 2020. "PREEMPT: Scalable Epidemic Interventions Using Submodular Optimization on Multi-GPU Systems." In International Conference for High Performance Computing, Network, Storage and Analysis (SC2020), November 9-19, 2020, Atlanta, GA, 1-15. Piscataway, New Jersey: IEEE. PNNL-SA-152817. doi:10.1109/SC41405.2020.00059

Tan C., C. Xie, A. Li, A. Tumeo. 2020. "OpenCGRA, A Unified Framework for Modeling, Testing, and Evaluating CGRAs”, In ICCD 2020: 38th International Conference on Computer Design (ICCD 2020), October 18-21, 2020, 381-388. Piscataway, New Jersey: IEEE. PNNL-SA-152863. doi:10.1109/ICCD50377.2020.00070

Tumeo A., V.G. Castellana, M. Minutoli, J. Manzano, V. Amatya, D. Brooks, G.Y. Wei. 2020. "Software Defined Accelerators from Learning Tools Environment’”, Invited paper. In DAC 2020: Design Automation Conference. Pp. 1-6 - PNNL-SA-152847

2019

Castellana V.G., M. Minutoli, A. Tumeo, M. Lattuada, P. Fezzardi, and F. Ferrandi. 2019. "Software Defined Architectures for Data Analytics”, Invited paper. In ASPDAC 2019: Asia and South Pacific Design Automation Conference. Pages 711–718 PNNL-SA-139669

Presentations:

2021

Tan C., and A. Tumeo. "DynPaC: Coarse-Grained, Dynamic, and Partially Reconfigurable Array for Streaming Applications." The 39th IEEE International Conference on Computer Design, Best Paper Award. October 24 - 27, 2021. PNNL-SA-167148. https://www.youtube.com/watch?v=EWOJQrRZNE0

2020

Tumeo A. "Intelligent Design Space Exploration for High-Level and System Synthesis." International Workshop on Machine Learning for Software Hardware Co-Design (MLSH'20) at PACT 2020 PNNL-SA-156842.

Tumeo A. "Software Defined Accelerators from Learning Tools Environment." CLSAC 2020: Chesapeake Large Scale Analytics Conference, Random Access Session presentation. PNNL-SA-156925.

Tumeo A. "Intelligent Design Space Exploration for High-Level and System Synthesis." AIDArc at ISCA, 2020. PNNL-SA-153440.

Tumeo A. "Data Model Convergence: a case for Software Defined Architectures." SuperComputing Frontiers Europe, 2020. PNNL-SA-152314.

2019

Tumeo A. "Big Graph Analytics – The System Perspective." Dagstuhl Seminar on Big Graph Processing, 2019. PNNL-SA-149960.

Tumeo A. "Data Model Convergence: a case for Software Defined Architectures." ARM Research Summit, 2019. PNNL-SA-147255.

Tumeo A. "Data Model Convergence: a case for Software Defined  Architectures." ACM Computing Frontiers, 2019. PNNL-SA-142492.

Software and Data Releases:

Bambu: https://panda.deib.polimi.it/?page_id=31

Datasets for energy characterization of graph workloads: https://github.com/ankurlimaye/energy-characterization-of-graph-workloads-data

OpenCGRA: https://github.com/pnnl/OpenCGRA

SODA-OPT: https://github.com/pnnl/soda-opt

SODA Toolchain Production Docker Image: https://hub.docker.com/r/agostini01/soda

Synergistic Activities:

2021

DAC 2021 - Special Session on Next Generation Opensource Tools for Hardware Specialization

GrAPL 2021 - IPDPS Workshop on Graphs: Architectures, Programming, and Learning

IA3 2021 - 11th SC Workshop on Irregular Applications: Architectures and Algorithms

ICS 2021 - PandA-Bambu tutorial

2020

DAC 2020 - Special Session on Agile Hardware development for Extreme Specialization

GrAPL 2020 - IPDPS Workshop on Graphs: Architectures, Programming, and Learning

IA3 2020 - 10th SC Workshop on Irregular Applications: Architectures and Algorithms

ICCAD 2020 - Special Session on OpenSource tools for Agile Hardware Design

2019

IA3 2019 - 9th SC Workshop on Irregular Applications: Architectures and Algorithms

PACT 2019 - PandA-Bambu tutorial

Editorial Contributions:

Tumeo A., F. Petrini, J. Feo, M.Halappanavar: Introduction to the TOPC Special Issue on Innovations in Systems for Irregular Applications, Part 2. ACM Trans. Parallel Comput. 7(4): 23:1-23:2 (2020)

Tumeo A., F. Petrini, J. Feo, M. Halappanavar: Introduction to the TOPC Special Issue on Innovations in Systems for Irregular Applications, Part 1. ACM Trans. Parallel Comput. 7(1): 1:1-1:2 (2020)

IP Generation:

ARENA: IP: 32213-E, https://github.com/pnnl/arena

Computational-Flow Architecture (CFA): Designing Non-Von-Neumann Architecture for Future Data-Centric Computing – A Li

Publications:

2023

Li Y., T. Geng, S.A. Stein, A. Li, and H. Yu. 2023. "GAAF: Searching Activation Functions for Binary Neural Networks through Genetic Algorithm." Tsinghua Science and Technology 28, no. 1:207 - 220. PNNL-SA-165349. doi:10.26599/TST.2021.9010084

2021

Geng T., A. Li, T. Wang, C. Wu, Y. Li, R. Shi, and W. Wu, et al. 2021. "O3BNN-R: An Out-Of-Order Architecture for High-Performance and Regularized BNN Inference." IEEE Transactions on Parallel and Distributed Systems 32, no. 1:199-213. PNNL-SA-148318. doi:10.1109/TPDS.2020.3013637

Li Y., T. Geng, A. Li, and H. Yu. 2021. "BCNN: Binary Complex Neural Network." Microprocessors and Microsystems 87. PNNL-SA-161063. doi:10.1016/j.micpro.2021.104359

Li A., and S. Su. 2021. "Accelerating Binarized Neural Networks via Bit-Tensor-Cores in Turing GPUs." IEEE Transactions on Parallel and Distributed Systems 32, no. 7:1878-1891. PNNL-SA-156570. doi:10.1109/TPDS.2020.3045828

Tan C., C. Xie, T. Geng, A. Marquez, A. Tumeo, K.J. Barker, and A. Li. 2021. "ARENA: Asynchronous Reconfigurable Accelerator Ring to Enable Data-Centric Parallel Computing." IEEE Transactions on Parallel and Distributed Systems 32, no. 12:2880-2892. PNNL-SA-152862. doi:10.1109/TPDS.2021.3081074

2020

Li A. and S. Su. 2020. "Accelerating Binarized Neural Networks via Bit-Tensor-Cores in Turing GPUs." IEEE Transactions on Parallel and Distributed Systems. PNNL-SA-156570. doi:10.1109/TPDS.2020.3045828

Wang T., T. Geng, A. Li, X. Jin, and M. Herbordt. 2020. "FPDeep: Scalable Acceleration of CNN Training on Deeply-Pipelined FPGA Clusters." IEEE Transactions on Computers 68, no. 8:1143 - 1158. PNNL-SA-140455. doi:10.1109/TC.2020.3000118

Conference Proceedings:

2022

Chen J., N.R. Tallent, K.J. Barker, X. Shen, H. Sung, and A. Li. 2022. "Bit-GraphBLAS: Bit-Level Optimizations of Matrix-Centric Graph Processing on GPU." In IEEE International Parallel and Distributed Processing Symposium (IPDPS 2022), May 30-June 03, 2022, Virtual, Online, 515-525. Los Alamitos, California: IEEE Computer Society. PNNL-SA-161317. doi:10.1109/IPDPS53621.2022.00056

Peng H., S. Huang, S. Chen, B. Li, T. Geng, A. Li, and W. Jiang, et al. 2022. "A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA Through Sparse Attention and Dynamic Pipelining." In Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC 2022), July 10-14, 2022, San Francisco, CA, 1135-1140. New York, New York: Association for Computing Machinery. PNNL-SA-170686. doi:10.1145/3489517.3530585

Tan C., N. Bohm Agostini, T. Geng, C. Xie, J. Li, A. Li, and K.J. Barker, et al. 2022. "DRIPS: Dynamic Rebalancing of Pipelined Streaming Applications on CGRAs." In IEEE International Symposium on High-Performance Computer Architecture (HPCA 2022), April 2-6, 2022, Seoul, Korea, 304-316. Piscataway, New Jersey: IEEE. PNNL-SA-165149. doi:10.1109/HPCA53966.2022.00030

Tan C., T. Tambe, J. Zhang, B. Fang, T. Geng, G. Wei, and D. Brooks, et al. 2022. "ASAP: Automatic Synthesis of Area-Efficient and Precision-Aware CGRAs." In Proceedings of the 36th ACM International Conference on Supercomputing (ICS 2022), June 28-30, 2022, Virtual, Online, Paper No. 4. New York, New York: Association for Computing Machinery. PNNL-SA-172791. doi:10.1145/3524059.3532359

You H., T. Geng, Y. Zhang, A. Li, and Y. Lin. 2022. "GCoD: Graph Convolutional Network Acceleration via Dedicated Algorithm and Accelerator Co-Design." In The 28th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2022), April 2-6, 2022, Virtual, Online, 460-474. Los Alamitos, California: IEEE Computer Society. PNNL-SA-161518. doi:10.1109/HPCA53966.2022.00041

Zhang C., S. Jin, T. Geng, J. Tian, A. Li, and D. Tao. 2022. "CEAZ: Accelerating Parallel I/O Via Hardware-Algorithm Co-Designed Adaptive Lossy Compression." In Proceedings of the 36th ACM International Conference on Supercomputing (ICS 2022), June 28-30, 2022, Virtual, Online, Paper No.: 12. New York, New York: Association for Computing Machinery. PNNL-SA-161283. doi:10.1145/3524059.3532362

2021

Feng B., Y. Wang, T. Geng, A. Li, and Y. Ding. 2021. "APNN-TC: Accelerating Arbitrary Precision Neural Networks on Ampere GPU Tensor Cores." In International Conference for High Performance Computing, Networking, Storage and Analysis: Science and Beyond (SC 2021), November 14-19, 2021, Virtual, Online, Art. No. 37. Los Alamitos, California: IEEE Computer Society. PNNL-SA-161389.  doi:10.1145/3458817.3476157

Geng T., C. Wu, C. Tan, C. Xie, A. Guo, P. Haghi, and S. He, et al. 2021. "A Survey: Handling Irregularities in Neural Network Acceleration with FPGAs." In IEEE High Performance Extreme Computing Conference (HPEC 2021), September 20-24, 2021, Virtual, Online, 1-8. Piscataway, New Jersey: IEEE. PNNL-SA-165315.  doi:10.1109/HPEC49654.2021.9622877

Geng T., C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, and M. Herbordt, et al. 2021. "I-GCN: A Graph Convolutional Network Accelerator with Runtime Locality Enhancement through Islandization." In Proceedings of the 54th IEEE/ACM Annual International Symposium on Microarchitecture (MICRO 2021), October 18-22, 2021, Virtual, Online, 1051 - 1063. Los Alamitos, California: IEEE Computer Society. PNNL-SA-161514.  doi:10.1145/3466752.3480113

Manu D., Y. Sheng, J. Yang, J. Deng, T. Geng, A. Li, and C. Ding, et al. 2021. "FL-DISCO: Federated Generative Adversarial Network for Graph-based Molecule Drug Discovery: Special Session Paper." In IEEE/ACM International Conference On Computer Aided Design (ICCAD 2021), November 1-4, 2021, Munich, Germany, 1-7. Piscataway, New Jersey: IEEE. PNNL-SA-166598.  doi:10.1109/ICCAD51958.2021.9643440

Peng H., S. Chen, Z. Wang, J. Yang, S. Weitze, T. Geng, and A. Li, et al. 2021. "Optimizing FPGA-based Accelerator Design for Large-Scale Molecular Similarity Search (Special Session Paper)." In IEEE/ACM International Conference On Computer Aided Design (ICCAD 2021), November 1-4, 2021, Munich, Germany, 1-7. Piscataway, New Jersey: IEEE. PNNL-SA-166147. doi:10.1109/ICCAD51958.2021.9643528

Peng H., S. Huang, T. Geng, A. Li, W. Jiang, H. Liu, and S. Wang, et al. 2021. "Accelerating Transformer-based Deep Learning Models on FPGAs using Column Balanced Block Pruning." In Proceedings of the 22nd International Symposium on Quality Electronic Design (ISQED 2021), April 7-9, 2021, Santa Clara, CA, 142-148. Piscataway, New Jersey: IEEE. PNNL-SA-159983. doi:10.1109/ISQED51717.2021.9424344

Peng H., S. Zhou, S. Weitze, J. Li, S. Islam, T. Geng, and A. Li, et al. 2021. "Binary Complex Neural Network Acceleration on FPGA." In IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP 2021), July 7-9, 2021, Virtual, 1, 85-92. Los Alamitos, California: IEEE Computer Society. PNNL-SA-165575. doi:10.1109/ASAP52443.2021.00021

Tan C., T. Geng, C. Xie, N. Bohm Agostini, J. Li, A. Li, and K.J. Barker, et al. 2021. "DynPaC: Coarse-Grained, Dynamic, and Partially Reconfigurable Array for Streaming Applications." In IEEE 39th International Conference on Computer Design (ICCD 2021), October 24-27, 2021, Virtual, Online, 33-40. Piscataway, New Jersey: IEEE. PNNL-SA-163151.  doi:10.1109/ICCD53106.2021.00018

Tan C., C. Xie, A. Li, K.J. Barker, and A. Tumeo. 2021. "AURORA: Automated Refinement of Coarse-Grained Reconfigurable Accelerators." In Design Automation and Test In Europe (DATE 2021), February 1-5, 2021, Virtual, Online, 2021, 1388 - 1393; Paper No. 9473955. Piscataway, New Jersey: IEEE. PNNL-SA-156552. doi: 10.23919/DATE51398.2021.9473955

2020

Geng T., A. Li, R. Shi, C. Wu, T. Wang, Y. Li, and P. Haghi, et al. 2020. "AWB-GCN: A Graph Convolutional Network Accelerator with Runtime Workload Rebalancing." In Proceedings 53rd IEEE/ACM International Symposium on Microarchitecture (MICRO), October 17-21, 2020, Athens, Greece, 922-936. Piscataway, New Jersey: IEEE. PNNL-SA-146537. doi:10.1109/MICRO50266.2020.00079

Geng T., C. Wu, C. Tan, B. Fang, A. Li, and M. Herbordt. 2020. "CQNN: a CGRA-based QNN Framework." In 2020 IEEE High-Performance Extreme Computing Conference (HPEC ‘20), September 22-24, 2020, Waltham, MA, 1-7. Piscataway, New Jersey: IEEE. PNNL-SA-153940. doi:10.1109/HPEC43674.2020.9286194

Tan C., C. Xie, A. Li, K.J. Barker, and A. Tumeo. 2020. "Open CGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating CGRAs." In IEEE 38th International Conference on Computer Design (ICCD 2020), October 18-21, 2020, 381-388. Piscataway, New Jersey: IEEE. PNNL-SA-152863.  doi:10.1109/ICCD50377.2020.00070

2019

Li A., T. Geng, T. Wang, M. Herbordt, S. Song, and K.J. Barker. 2019. "BSTC: A Novel Binarized-Soft-Tensor-Core Design for Accelerating Bit-Based Approximated Neural Nets." In International Conference for High Performance Computing, Networking, Storage, and Analysis, November 17-22, 2019, Denver, CO, Article No a38. Los Alamitos, California: IEEE Computer Society. PNNL-SA-142851. doi:10.1145/3295500.3356169

IP Generation:

ARENA: IP: 32213-E, https://github.com/pnnl/arena

OpenCGRA: IP ID No. 32031-E, https://github.com/pnnl/OpenCGRA

TCBNN: IP ID No. 31925-E https://github.com/pnnl/TCBNN

Application-Algorithm-Architecture Co-Design for Large-Scale, Sparse Tensor/Matrix Methods (HiParTI) – J Li

Publications:

2020

Hein E., S. Eswar, A. Yasar, J. Li, J.S. Young, T. Conte, and U. Catalyurek, et al. 2020. "Programming Strategies for Irregular Algorithms on the Emu Chick." ACM Transactions on Parallel Computing 7, no. 4: Article No. 25. PNNL-SA-144460. doi:10.1145/3418077

2019

Hein E., S. Eswar, A. YASAR, J. Li J, J.S. Young, T. Conte, and U. Catalyurek, et al. 2019. "Programming Strategies for Irregular Algorithms on the Emu Chick." arXiv. PNNL-SA-144460.

Li J, Y. Ma, X. Wu, A. Li, K. Barker. 2019. PASTA: A Parallel Sparse Tensor Algorithm Benchmark Suite. CCF Transactions on High-Performance Computing. PNNL-SA-140675.

Young J.S., E. Hein, S. Eswar, P. Lavin, J. Li, J. Riedy, R. Vuduc, T. Conte. 2019. A Microbenchmark Characterization of the Emu Chick. Journal of Parallel Computing. PNNL-SA-143941.

Conference Proceedings:

2021

Liu J., D. Li, R. Gioiosa, and J. Li. 2021. "Athena: High-Performance Sparse Tensor Contraction Sequence on Heterogeneous Memory. " In Proceedings of the ACM International Conference on Supercomputing (ICS 2021) June 14-17, 2021, Virtual, Online, 190 - 202. New York, New York: Association for Computing Machinery. PNNL-SA-159741. doi:10.1145/3447818.3460355

Liu J., J. Ren, R. Gioiosa, D. Li, J. Li. Sparta: High-Performance, Element-Wise Sparse Tensor Contraction on Heterogeneous Memory. Principles and Practice of Parallel Programming (PPoPP). 2021. (Accepted) PNNL-SA-155439.

Xie C., J. Chen, J.S. Firoz, J. Li, S. Song, K.J. Barker, and M.V. Raugas, et al. 2021. "Fast and Scalable Sparse Triangular Solver for Multi-GPU Based HPC Architectures." In 50th International Conference on Parallel Processing (ICPP-21), August 9-12, 2021, Lermont, IL, Article No. 53, pages 1-11. New York, New York: Association for Computing Machinery. PNNL-SA-150878. doi:10.1145/3472456.3472478

2020

Li J., M. Lakshminarasimhan, X. Wu, A. Li, C. Olschanowsky, and K.J. Barker. 2020. "A Sparse Tensor Benchmark Suite for CPUs and GPUs." In IEEE International Symposium on Workload Characterization (IISWC 2020), October 27-30, 2020, Beijing, China, 193-204. Piscataway, New Jersey: IEEE. PNNL-SA-142736.  doi:10.1109/IISWC50251.2020.00027

Wu X., Y. Yi, D.Tian, J. Li. Generic, Sparse Tensor Core for Neural Networks. 1st International Workshop on Machine Learning for Software Hardware Co-Design (MLSH), in conjunction with the 29th International Conference on Parallel Architectures and Compilation Techniques (PACT). 2020. PNNL-SA-150292.

2019

Nisa I., J. Li, A. Sukumaran-Rajam, P. Rawat, S. Krishnamoorthy, P. Sadayappan. An Efficient Mixed-Mode Representation of Sparse Tensors. ACM/IEEE International Conference for High-Performance Computing, Networking, Storage, and Analysis (SC). 2019. PNNL-SA-142737.

Posters:

2020

Li J., M. Lakshminarasimhan, X. Wu, Ang Li, C. Olschanowsky, K. Barker. A Parallel Sparse Tensor Benchmark Suite on CPUs and GPUs. Principles and Practice of Parallel Programming (PPoPP). 2020. (Poster) PNNL-SA-150292.

Miao Z., J. C. Calhoun, R. Ge, J. Li. Sparsity-Aware Distributed Tensor Decomposition. ACM/IEEE International Conference for High-Performance Computing, Networking, Storage, and Analysis (SC). 2020. (Poster) PNNL-SA-155621

IP Generation:

A Parallel Sparse Tensor Algorithm Benchmark Suite (PASTA) https://gitlab.com/tensorworld/pasta

HiParTI: A Hierarchical Parallel Tensor Infrastructure  https://github.com/pnnl/HiParTI

Segmented Global Address Space (SGAS): A Memory-Centric Programming Model and Runtime – A Lumsdaine

Conference Proceedings:

2021

Lumsdaine A., L. D'Alessandro, K. Deweese, J.S. Firoz, T. Liu, S. Mcmillan, and J.P. Ratzloff, et al. 2022. “NWGraph: A Library of Generic Graph Algorithms and Data Structures in C++20.” In 36th European Conference on Object-Oriented Programming (ECOOP 2022), June 6-10, 2022, Berlin, Germany.  Leibniz International Proceedings in Informatics, LIPIcs, edited by K. Ali and J. Vitek, 222, 31:1 – 31:28. Dagstuhl: Schloss agstuhl – Leibniz-Zentrum. PNNL-SA-173390.  doi:10.4230/LIPIcs.ECOOP.2022.31

2020

Azad M., M.M. Aznaveh, S. Beamer, M. Blanco, J. Chen, L. D'Alessandro, and R. Dathathri, et al. 2020. "Evaluation of Graph Analytics Frameworks Using the GAP Benchmark Suite." In IEEE International Symposium on Workload Characterization (IISWC 2020), October 27-30, 2020, Beijing, China. 216-227. IEEE. Piscataway, New Jersey. PNNL-SA-154466. doi:10.1109/IISWC50251.2020.00029

Liu X.T., M. Halappanavar, K. J. Barker, A. Lumsdaine, and A. H. Gebremedhin. 2020. “Direction-optimizing label propagation and its application to community detection.” In Proceedings of the 17th ACM International Conference on Computing Frontiers, CF 2020, Catania, Sicily, Italy, May 11-13, 2020, 2020, pp. 192–201, doi: 10.1145/3387902.3392634.

IP Generation:

P17093: Graph Library Proposal to ISO C++ Standards Committee

Fixing Amdahl’s Law within the Limits of Accelerated Systems (FALLACY) – A Marquez

Publications:

2021

Tan C., C. Xie, T. Geng, A. Marquez, A. Tumeo, K.J. Barker, and A. Li. 2021. "ARENA: Asynchronous Reconfigurable Accelerator Ring to Enable Data-Centric Parallel Computing." IEEE Transactions on Parallel and Distributed Systems 32, no. 12:2880-2892. PNNL-SA-152862. doi:10.1109/TPDS.2021.3081074

2020

Kilic O.O., C. Xie, N.R. Tallent, A. Marquez, and R.D. Friese. 2020. "Fast Memory Tracing for Reducing the Dominant Cost of Computation." Online Conference, Washington. PNNL-SA-153966.

Kilic O.O., C. Xie, N.R. Tallent, A. Marquez, and R.D. Friese. 2020. "Fallacy Fixing Amdahl’s Law within the Limits of Accelerated Systems." Richland, Washington. PNNL-SA-152249.

Kilic O.O., N.R. Tallent, and R.D. Friese. 2020. "Rapid Memory Footprint Access Diagnostics." In IEEE International Symposium on Performance Analysis of Systems and Software. PNNL-SA-155625.

Marquez A., N.R. Tallent, O.O. Kilic, C. Xie, and R.D. Friese. 2020. "FALLACY  Fixing Amdahl’s Law within the Limits of Accelerated Systems." Richland, Washington. PNNL-SA-153427.

Conference Proceedings:

2022

Kilic O.O., N.R. Tallent, Y. Suriyakumar, C. Xie, A. Marquez, and S. Eranian. 2022. "MemGaze: Rapid and Effective Load-Level Memory Trace Analysis." In IEEE International Conference on Cluster Computing (CLUSTER 2022), September 5-8, 2022, Heidelberg, Germany, 484-495. Piscataway, New Jersey: IEEE. PNNL-SA-174803.  doi:10.1109/CLUSTER51413.2022.00058

IP Generation:

MemGaze: https://github.com/pnnl/memgaze

A Compiler Infrastructure for Data-Model Convergence (DuoMO) – G Kestor

Publications:

2021

Kestor G. 2021. "COMET: Domain Specific Compilation in Multi-level IR." Online, Washington. PNNL-SA-168331.

Kestor G., E. Mutlu, and R. Gioiosa. 2021. "Co-Design through Domain-Specific Compilation Framework." Abstract submitted to ASCR Workshop on Reimagining Codesign, Online, Washington. PNNL-SA-160162.

Tian R., L. Guo, and G. Kestor. 2021. "Sparse tensor algebra optimizations in MLIR." In 2021 LLVM DEVELOPERS' MEETING. PNNL-SA-168325.

Tian R., L. Guo, J. Li, B. Ren, and G. Kestor. 2021. "A High Performance Sparse Tensor Algebra Compiler in MLIR." In IEEE/ACM 7th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC 2021), November 14, 2021, St. Louis, MO, 27-38. Piscataway, New Jersey: IEEE. PNNL-SA-168094. doi:10.1109/LLVMHPC54804.2021.00009

2020

Kestor G. 2020. "DuoMO: A compiler infrastructure for Data MOdel convergence." Presented by G. Kestor at University of Utah Lightning Talks, Richland, Washington. PNNL-SA-151951.

Mutlu E., R. Tian, B. Ren, S. Krishnamoorthy, R. Gioiosa, J. Pienaar, and G. Kestor. 2020. "COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry." Presented by E. Mutlu at MLIR Design Meeting, Online Meeting, United States. PNNL-SA-157864.

Mutlu E., R. Tian, B. Ren, S. Krishnamoorthy, R. Gioiosa, J. Pienaar, and G. Kestor. 2020. "COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry." Presented by E. Mutlu at The Workshop on Languages and Compilers for Parallel Computing, Online Conference, New York. PNNL-SA-157110.

Tian R., and G. Kestor. 2020. "Automatic code generation for Sparse computational kernels in MLIR." Online, Washington. PNNL-SA-168328.

Conference Proceedings:

2022

Mutlu E., R. Tian, B. Ren, S. Krishnamoorthy, R. Gioiosa, J. Pienaar, and G. Kestor. 2022. "COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry." In Proceedings of the 33rd International Workshop on Languages and Compilers for Parallel Computing, (LCPC 2020), October 14-16 2020, Virtual, Online. Lecture Notes in Computer Science, edited by B. Chapman, J. Moreira, 13149, 87 - 103. PNNL-SA-155440. doi:10.1007/978-3-030-95953-1_7

2021

Jeong G., G. Kestor, P. Chatarasi, A. Parashar, P. Tsa, S. Rajamanickam, and R. Gioiosa, et al. 2021. "Union: A Unified HW-SW Co-Design Ecosystem in MLIR for Evaluating Tensor Operations on Spatial Accelerators." In Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques (PACT 2021), September 22-29, 2021, Atlanta, GA, 30-44. Los Alamitos, California: IEEE Computer Society. PNNL-SA-168329. doi:10.1109/PACT52795.2021.00010

Tian R., L. Guo, J. Li, B. Ren, and G. Kestor. 2021. "A High Performance Sparse Tensor Algebra Compiler in MLIR." In IEEE/ACM 7th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC 2021), November 14, 2021, St. Louis, MO, 27-38. Piscataway, New Jersey: IEEE. PNNL-SA-168094. doi:10.1109/LLVMHPC54804.2021.00009

2020

Mutlu E., R. Tian, B. Ren, S. Krishnamoorthy, R. Gioiosa, J. Pienaar, and G. Kestor. 2022. "COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry." In Proceedings of the 33rd International Workshop on Languages and Compilers for Parallel Computing, (LCPC 2020), October 14-16, 2020, Virtual, Online. Lecture Notes in Computer Science, edited by B. Chapman, J. Moreira, 13149, 87 - 103. PNNL-SA-155440.  doi:10.1007/978-3-030-95953-1_7

IP Generation

COMET: https://github.com/pnnl/COMET

Application-Algorithm-Architecture Co-Design for Large-Scale, Sparse Tensor/Matrix Methods (HiParTI) – C Xie

Publications:

2021

Xie C., J. Chen, J.S. Firoz, J. Li, S. Song, K.J. Barker, and M.V. Raugas, et al. 2021. "Fast and Scalable Sparse Triangular Solver for Multi-GPU Based HPC Architectures." In 50th International Conference on Parallel Processing (ICPP-21), August 9-12, 2021, Lermont, IL, Article No. 53, pages 1-11. New York, New York: Association for Computing Machinery. PNNL-SA-150878. doi:10.1145/3472456.3472478

2020

Hein E., S. Eswar, A. Yasar, J. Li, J.S. Young, T. Conte, and U. Catalyurek, et al. 2020. "Programming Strategies for Irregular Algorithms on the Emu Chick." ACM Transactions on Parallel Computing 7, no. 4: Article No. 25. PNNL-SA-144460. doi:10.1145/3418077

Li J., M. Lakshminarasimhan, X. Wu, A. Li, C. Olschanowsky, and K.J. Barker. 2020. "A Sparse Tensor Benchmark Suite for CPUs and GPUs." In IEEE International Symposium on Workload Characterization (IISWC 2020), October 27-30, 2020, Beijing, China, 193-204. Piscataway, New Jersey: IEEE. PNNL-SA-142736. doi:10.1109/IISWC50251.2020.00027

Navier: Dataflow Architecture for Computation Chemistry – R Gioiosa

Publications: 

2022

Ashraf R.A., and R. Gioiosa. 2022. "Exploring the Use of Novel Spatial Accelerators in Scientific Applications." In Proceedings of the ACM/SPEC International Conference on Performance Engineering (ICPE 2022), April 9-13, 2022, Beijing, China, 47-58. New York, New York: Association for Computing Machinery. PNNL-SA-169884.  doi:10.1145/3489525.3511690

Mutlu E., R. Tian, B. Ren, S. Krishnamoorthy, R. Gioiosa, J. Pienaar, and G. Kestor. 2022. "COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry." In Proceedings of the 33rd International Workshop on Languages and Compilers for Parallel Computing (LCPC 2020), October 14-16 2020, Virtual, Online. Lecture Notes in Computer Science, edited by B. Chapman, J. Moreira, 13149, 87 - 103. PNNL-SA-155440.  doi:10.1007/978-3-030-95953-1_7

2021

Liu J., J. Ren, R. Gioiosa, D. Li, and J. Li. 2021."Sparta: high-performance, element-wise sparse tensor contraction on heterogeneous memory." In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '21). Association for Computing Machinery, New York, NY, USA, 318–333. PNNL-SA-155439. doi: 10.1145/3437801.3441581

2020

Kamatar A.V., R.D. Friese, and R. Gioiosa. 2020. "Locality-Aware Scheduling for Scalable Heterogeneous Environments." In IEEE/ACM International Workshop on Runtime and Operating Systems for Supercomputers (ROSS 2020), November 13, 2020, Virtual Event, 50-58. Los Alamitos, California: IEEE Computer Society. PNNL-SA-157073.  doi:10.1109/ROSS51935.2020.00011

Presentations:

2022

Gioiosa R. "Re-Imagining HW/SW Co-Design: a Flexible, Composable, and Agile approach." Invited talk at the 2022 CRNCH Summit, GTech, Virtual

Gioiosa R. "Introduction to Navier." Collaboration meeting with AMD/Xilinx.

Gioiosa R. "MCL Overview." Collaboration meeting with AMD/Xilinx.

Kestor G. and R. Gioiosa. "Introduction to COMET." Collaboration meeting with AMD/Xilinx.

2021

Gioiosa R. 10/01/2021. "Programming Extremely Heterogeneous Systems with the Minos Computing Library." Presented by R. Gioiosa at Computational Research Leadership Council (CRLC) Seminar Series, Online Conference, United States. PNNL-SA-168061.

Gioiosa R. "Re-Imagining HW/SW Co-Design for Extremely Heterogeneous Systems." Invited keynote at the 2021 Heterogeneity in Computing Workshop, in conjunction with IPDPS21, VirtuaI.

Software and Data Releases:

MCL v 0.5

MCL v 0.6

Synergistic Activities:

2023

PPoPP2023 - Basic MCL Programming tutorial

2022

PPoPP2022 - Basic MCL Programming tutorial

2021

PPoPP2021 - Basic MCL Programming tutorial

ICS2021 - Basic MCL Programming tutorial

 

Lab-Level Communications Priority Topics

Computing

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Policy
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • X (formerly Twitter)
  • Instagram
  • LinkedIn