Data Scientist
Data Scientist


Neeraj Kumar, a computational data scientist, has extensive research experience in computational chemistry, biophysics, drug discovery, structural and molecular biology, bio/cheminformatics, multi-omics data analysis, metabolic network, molecular modeling, and simulation of complex biological systems. His graduate research was directed toward the molecular-level understanding of vitamin B12 mediated enzymatic reactions and structure-based drug design using machine learning (ML). Currently, his research interests are focused on developing mathematical and artificial intelligence (AI)/ML tools to solve challenging systems and synthetic biology problems. He examines problems on a fundamental level using basic principles of statistical physics and chemistry, including chemical properties and accurate data computed from first principles approximation. This includes developing an AI-based small molecule design (both ligand and structure-based) for biomedical applications. 

Research Interest

  • AI and ML/deep learning for small molecule design 
  • Computational chemistry methods, such as quantum mechanics, molecular dynamics, and molecular mechanics
  • Computational modeling and analysis of genome-scale metabolic networks (genome annotation and pathway engineering)
  • Multi-omics (transcriptomics, proteomics, and metabolomics ) data analysis, integration, and prediction
  • Quantum computing/sensing, cloud computing and high-performance computing (HPC)

Disciplines and Skills

  • AI
  • Bioinformatics
  • Computational biology
  • Computational chemistry
  • Deep learning
  • Drug discovery
  • HPC
  • ML
  • Metabolic bone disease
  • Molecular dynamics
  • Molecular modeling
  • Quantum mechanics
  • Small molecules
  • Software engineering
  • Systems biology
  • Theoretical and computational chemistry
  • Therapeutic modalities
  • Therapeutic protein targets


  • PhD in Chemistry, University of Louisville
  • MS in Chemistry, University of Louisville
  • MS in Computational Chemistry, Panjab University
  • BS in Math, Physics, and Chemistry, Panjab University

Awards and Recognitions

  • Outstanding Performance Award, PNNL (2019)
  • Appreciation award at the OLC International Biotechnology Conference (2019)
  • Outstanding Performance Award, PNNL (2016)
  • Awarded Graduate Dean’s Citation for Excellence in Graduate Studies at University of Louisville (2013)
  • Lawrence Graduate Student Award, Lawrence Livermore National Laboratory (2012)
  • Graduate Student Union Fellowship, University of Louisville (2011)



  • Artz, J. H.; Zadvornyy, O. A.; Mulder, D. W.; Keable, S. M.; Cohen, A. E.; Ratzloff, M. W.; Williams, S. G.; Ginovska, B.; Kumar, N.; Song, J.; McPhillips, S. E.; Davidson, C. M.; Lyubimov, A. Y.; Pence, N.; Schut, G. J.; Jones, A. K.; Soltis, S. M.; Adams, M. W. W.; Raugei, S.; King, P. W.; Peters, J. W., Tuning Catalytic Bias of Hydrogen Gas Producing Hydrogenases. J. Am. Chem. Soc. 2020, 142 (3), 1227-1235.
  • Siriwardane E.; Joshi, R.; Kumar, N.; and Cakir, D. “Machine Learning and DFT Prediction of Formation/Exfoliation Energy and Structure Correlation of MAB Phases.” ACS Appl. Mater. Interfaces (Accepted, 2020,


  • Kumar, N.; Bucher, D.; Kozlowski, P. M. “Reaction Mechanism for the Initial Step of B12-Dependent Methylmalonyl CoA Mutase” Journal of Physical Chemistry B  2019, 123, 2210-2216 .
  • Pegis, M. L.; Martin, D. J.; Wise, C. F.; Brezny, A. C.; Johnson, S. I.; Johnson, L. E.; Kumar, N.; Raugei, S.; Mayer, J. M. “Mechanism of Catalytic O2 Reduction by Iron Tetraphenylporphyrin” J. Am. Chem. Soc. 2019 141 (20), 8315-8326.
  • Cannon, W., Britton, S., Zucker, J., Baxter, D., Kumar, N., et. al (2018). “Prediction of Metabolite Concentrations Using Maximum Entropy-Based Simulations with Application to Central Metabolism of Neurospora crassa” Biophysical Journal, 2019, 116(3), 130.
  • Kumar, N.; Darmon, J.; Weiss, C.; Helm, M.; Raugei, S.; Bullock, M. R. “Outer Coordination Sphere Proton Relay Base and Proximity Effects on Hydrogen Oxidation with Iron Electrocatalysts” Organometallics, 2019. DOI:10.1021/acs.organomet.8b00805 
  • Hurley, J. M.; Jankowski, M. S.; Crowell, A.; Fordyce, S.; Zucker, J. D.; Kumar, N.; De Los Santos, H.; Purvine, S.; Robinson, E.; Shukla, A.; Zink, E.; Cannon, W. R.; Baker, S.; Loros, J. J.; Dunlap, J. C., Circadian proteomic analysis uncovers mechanisms of post-transcriptional regulation in metabolic pathways. Cell Systems 2018, 7, 613-626.


  • Smallwood, C. R., Chen J-H, Kumar, N., Chrisler, W. B., Purvine, S. O., Kyle, J. E., Nicora. C. D., Boudreau, R., Ekman, A., Hixson. K. H., Moore, R. J., Mcdermott, G., Cannon, R.,  Evans, J. E. "Integrated systems biology and imaging of the smallest free-living eukaryote" BioRxiv (2018) doi: 10.1101/293704
  • Cannon WR, JD Zucker, DJ Baxter, N Kumar, SE Baker, J Hurley, and JC Dunlap. 2018. "Prediction of Metabolite Concentrations, Rate Constants and Post-Translational Regulation using Maximum Entropy-based Simulations with Application to Central Metabolism of Neurospora crassa." Processes 6(6):Article No. 63.  doi:10.3390/pr6060063


  • Cardenas AJ, B Ginovska-Pangovska, N Kumar, J Hou, S Raugei, ML Helm, AM Appel, RM Bullock, and MJ O'Hagan. 2016. "Controlling Proton Delivery with Catalyst Structural Dynamics." Angewandte Chemie International Edition 55(43):13509-13513. doi:10.1002/anie.201607460
  • Pegis ML, BA McKeown, N Kumar, K Lang, DJ Wasylenko, P Zhang, S Raugei, and JM Mayer. 2016. "Homogenous Electrocatalytic Oxiygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions." ACS Central Science 2(11):850-856. doi:10.1021/acscentsci.6b00261
  • Brady, G; Kumar, N.; Jaworska, M.; Lodowski, P.; Kozlowski, P. M. “Electronically Excited States of Cob(II)alamin: Insights from CASSCF/XMCQDPT2 and TD-DFT Calculations” Phys. Chem. Chem. Phys., 2016, 18, 4513-4526.


  • Hulley E, N Kumar, S Raugei, and RM Bullock. 2015. "Manganese-Based Molecular Electrocatalysts for Oxidation of Hydrogen." ACS Catalysis 5(11):6838-6847. doi:10.1021/acscatal.5b01751
  • Darmon JM, N Kumar, E Hulley, CJ Weiss, S Raugei, RM Bullock, and ML Helm. 2015. "Increasing the Rate of Hydrogen Oxidation without Increasing the Overpotential: A Bio-Inspired Iron Molecular Electrocatalyst with an Outer Coordination Sphere Proton Relay." Chemical Science 6(5):2737-2745.  doi:10.1039/C5SC00398A (Selected as cover page for the journal).


  • Kumar N, DM Camaioni, M Dupuis, S Raugei, and AM Appel. 2014. "Mechanistic Insights into Hydride Transfer for Catalytic Hydrogenation of CO2 with Cobalt Complexes." Dalton Transactions 43(31):11803-11806.  doi:10.1039/c4dt01551g (Selected as cover page for the journal).
  • Kumar, N.; Kozlowski, P. M. “Mechanistic Insights for the formation of organometallic Co-C bond in the reaction catalyzed by methionine synthase” J. Phys. Chem. B, 2013, 117, 16044-16057.
  • Kumar, N. Camaioni, D. M., Dupuis, M., Raugei S., Appel, A. M. “Inside Front Cover for Mechanistic Insights into Hydride Transfer for Catalytic Hydrogenation of CO2 with Cobalt Complexes” Dalton Trans., 2014, 43, 11770.


  • Kumar, N.; Kuta, J.; Galezowski, W.; Kozlowski, P. M. “One-Electron-Oxidized Form of the Methylcobalamin Cofactor: Spin Density Distribution and Pseudo-Jahn-Teller Effect” Inor. Chem. 2013, 52, 1762-1771.
  • Koziol, L.; Kumar, N.; Wong, E. S.; Lightstone, F. C. “Molecular recognition of aromatic rings by flavin: electrostatics and dispersion determine ring positioning above isoalloxazine” J. Phys. Chem. A, 2013, 117, 12946-12952.
  • Kumar, N.; Kozlowski, P. M. “Mechanistic Insights for the formation of organometallic Co-C bond in the reaction catalyzed by methionine synthase” J. Phys. Chem. B, 2013, 117, 16044-16057.
  • Kornobis, K.; Kumar, N.; Wong, B. M.; Jaworska, M.; Lodowski, P.; Kozlowski, P. M. “Electronic Structure of S1 State in Methylcobalamin: Benchmark Analysis Including CASSCF/MC-XQDPT2, EOM-CCSD and TD-DFT Calculations” J. Comput. Chem. 2013, 44, 1987-1004.
  • Kumar, N.; Liu S. B.; Kozlowski, P.M. “Charge Separation Propensity of the Coenzyme B12–Tyrosine Complex in Adenosylcobalamin-Dependent Methylmalonyl–CoA Mutase Enzyme” J. Phys. Chem. Letters 2012, 3, 1035-1038.