Ocean biogeochemical modeling software now available as open source to help researchers predict impacts of pollution, sea level rise, and climate change.
Integrating hydrogeology and biogeochemistry are required to model the dynamics of geochemical processes occurring in river corridor zones where groundwater and surface water mix.
Existing techniques to detect pertechnetate in the environment have drawbacks. PNNL’s redox sensor technology uses a gold probe to accurately and efficiently measure low levels of pertechnetate—and possibly other contaminants—in groundwater
Peering through the thick, green glass of a decades-old "hot cell," an expert technician manipulates robotic arms to study highly radioactive waste from Hanford, in support of ongoing cleanup.
This time of year finds many of us busy with holiday shopping. While PNNL might not be developing the latest video games or hoverboards, we are working hard to deliver a few presents you might like.
Cleaning up Hanford is no easy task: it is one of the world's largest and most complex environmental remediation projects. The nation's top engineering firms are on the job and the Department of Energy's PNNL is helping.
PNNL takes pride in advancing scientific frontiers and developing solutions to vexing problems. In particular, we apply our technical expertise to address national needs in security, energy and the environment.