March 13, 2018
Feature

The Effect of Deep Convection on Phytoplankton Blooms in the Northern Labrador Sea

Weakened mixing in the ocean depths under a warmer climate could severely reduce spring blooms in the North Atlantic

Balaguru_convection_800px

Deep wintertime mixing in the northern Labrador Sea plays a key role in the region's spring phytoplankton blooms. Without deep convection or mixing, phytoplankton would disappear into the ocean's abyss.

The Science

Water masses formed in the Greenland, Norwegian, and Labrador seas—collectively referred to as North Atlantic Deep Water—drive global ocean circulation and influence how heat travels toward the poles.

In a study led by the U.S. Department of Energy's Pacific Northwest National Laboratory, scientists found that deep mixing in the northern Labrador Sea during the winter, associated with the formation of North Atlantic Deep Water, plays an important role in the region's spring phytoplankton blooms. Heavier phytoplankton, which would otherwise sink under their own weight into the ocean's abyss, remain suspended in the ocean's mixed layer, and the mixing process increases their probability of experiencing light levels conducive to photosynthesis.

The Impact

In a warming climate, the Arctic ice sheet is projected to melt, and the consequent freshwater discharge will likely disrupt deep mixing in the Labrador Sea. Without deep convection or mixing, phytoplankton—the basic building blocks of the marine food chain—would be lost to the abyss. That scenario, when taken into consideration with the results from this study, could have severe consequences for the marine ecosystems of the northern Labrador Sea.

Summary

Wintertime convective mixing plays a pivotal role in the subpolar North Atlantic spring phytoplankton blooms by favoring phytoplankton survival in the competition between light-dependent production and losses due to grazing and gravitational settling. Few studies have examined the relationship between the variability of mixed layer depth and plankton blooms in the Labrador Sea. The winter mixed layer in the Labrador Sea is deepest in March. Beginning in April, the mixed layer becomes shallower and the surface chlorophyll bloom starts.

Researchers used satellite data and ocean reanalyses to show that the area-averaged maximum depth of the winter mixed layer is positively correlated with April surface chlorophyll concentration in the northern Labrador Sea (between 60°W-50°W and 60°N-65°N). Next, they developed a simple theoretical framework to understand the relative roles of winter/spring convection and gravitational settling of spring blooms in this region. Scientists then combined that framework with Community Earth System Model simulations that project a weakening of wintertime Labrador Sea convection from Arctic sea ice melt.

Their findings suggest a potentially significant reduction in the initial fall phytoplankton population that could survive the winter and seed the region's spring bloom by the end of the 21st century.

Acknowledgments

Sponsors: KB, LB, PJR, and LRL were supported by the Office of Science, U.S. Department of Energy as part of the Regional and Global Climate Modeling program. SCD acknowledges support from NASA Award NNX15AE65G North Atlantic Aerosols and Marine Ecosystems Study (NAAMES).

Reference: K. Balaguru, S.C. Doney, L. Bianucci, P.J. Rasch, L.R. Leung, J.-H. Yoon, I.D. Lima, "Linking Deep Convection and Phytoplankton Blooms in the Northern Labrador Sea in a Changing Climate." PLoS ONE 13(1), e0191509 (2018). [DOI: 10.1371/journal.pone.0191509]

Download Publication

Key Capabilities

###

About PNNL

Pacific Northwest National Laboratory draws on its distinguishing strengths in chemistry, Earth sciences, biology and data science to advance scientific knowledge and address challenges in sustainable energy and national security. Founded in 1965, PNNL is operated by Battelle for the Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science. For more information on PNNL, visit PNNL's News Center. Follow us on Twitter, Facebook, LinkedIn and Instagram.

Published: March 13, 2018

Research Team

Karthik Balaguru, Philip J. Rasch, and L. Ruby Leung, PNNL
Laura Bianucci, PNNL/Institute of Ocean Sciences, Fisheries and Oceans Canada
Scott C. Doney, University of Virginia/Woods Hole Oceanographic Institution
Jin-Ho Yoon, Gwangju Institute of Science and Technology (South Korea)
Ivan D. Lima, Woods Hole Oceanographic Institution