Researchers show how satellite observations from the MODerate Resolution Imaging Spectroradiometer and CloudSat radar can be used to constrain the ACI radiative forcing that is linked to droplet collection in marine liquid clouds.
Researchers provide clear evidence to show that the fourfold Arctic Amplification over recent decades is an anomaly caused by dominant modes of natural variability.
Researchers synthesize molecular-level laboratory experiments to develop comprehensive model representations of new particle formation and the chemical transformation of precursor gases.
Researchers show application of a causal model better identifies direct and indirect causal relations compared to correlation and random forest analyses performed over the same dataset.
At the second Grid Resilience to Extreme Events Summit, a diverse range of experts gathered to tackle the biggest challenges in building a resilient grid.
Study explores Exploration of Coastal Hydrobiogeochemistry Across a Network of Gradients and Experiments, a consortium of scientists interested in the exchange between water and land in coastal systems.
This study demonstrates a new model that integrates complex organic matter (OM) chemistry and multiple electron acceptors to predict kinetic rates of OM oxidation.
PNNL computing experts Robert Rallo and Court Corley contribute their knowledge to a recent DOE report on applications of AI to energy, materials, and the power grid.
Study demonstrates that choosing more accurate numerical process coupling helps improve simulation of dust aerosol life cycle in a global climate model.
The SHASTA program is doing a deep dive on subsurface hydrogen storage in underground caverns, helping to lay the foundation for a robust hydrogen economy.
Researchers used a combination of sophisticated laboratory incubations and field measurements to determine the role of microbial production and consumption of methane in soils with different exposure to tidal inundation