The world is becoming reliant on increasingly smaller sensors that improve daily life in many ways. A PNNL-led paper takes a closer look at these technologies and their future development for environmental and sensitive species monitoring.
Researchers seeking to enhance a climate model’s predictive capability identify parameters that cause the largest sensitivities for several important cloud-related fidelity metrics.
Researchers developed a natural gas trade infrastructure capability within a computer planning model that includes representations of energy, agriculture and land use, economy, water, and climate systems in 32 regions of the world.
Researchers devised a quantitative and predictive understanding of the cloud chemistry of biomass-burning organic gases helping increase the understanding of wildfires.
Researchers developed a groundbreaking database that includes 40,000 synthetic tropical cyclones, crafted using the Risk Analysis Framework for Tropical Cyclones and pioneering the application of advanced artificial intelligence.
Streamflow variability plays a crucial role in shaping the dynamics and sustainability of Earth's ecosystems, which can be simulated and projected by ESMs. However, the simulation of streamflow is subject to considerable uncertainties.
A new study uses direct numerical simulations to develop a near-surface turbulence model for thermal convection using interpretable and physics-aware neural networks, broadening the applications of numerical simulations.
The Earth System Model Aerosol–Cloud Diagnostics package version 2 uses aircraft, ship, ground, and satellite measurements to evaluate detailed physical processes in aerosols, clouds, and aerosol–cloud interactions.
Decreased snow cover observed over the past few decades and projected for the future suggest increasing snow droughts that threaten water security and management.
Using regional meteorological data from an atmosphere reanalysis product, scientists identified 12 unique winter weather systems in the Puget Sound area, featuring differing precipitation and temperature responses to climate variabilities.
The Emissions Model Intercomparison Project examined how selected emissions-related properties affected results in 11 global chemistry and Earth-system models.
PNNL’s Center for the Remediation of Complex Sites convened attendees from around the world to discuss challenges associated with environmental contamination.
PNNL helps deliver efficiency-related rules and requirements that steadily improve performance of America’s buildings, saving energy and costs and reducing carbon emissions.