Skip to main content

PNNL

  • About
  • News & Media
  • Careers
  • Events
  • Research
    • Scientific Discovery
      • Biology
        • Chemical Biology
        • Computational Biology
        • Ecosystem Science
        • Human Health
          • Cancer Biology
          • Exposure Science & Pathogen Biology
        • Integrative Omics
          • Advanced Metabolomics
          • Chemical Biology
          • Mass Spectrometry-Based Measurement Technologies
          • Spatial and Single-Cell Proteomics
          • Structural Biology
        • Microbiome Science
          • Biofuels & Bioproducts
          • Human Microbiome
          • Soil Microbiome
          • Synthetic Biology
        • Predictive Phenomics
      • Chemistry
        • Computational Chemistry
        • Chemical Separations
        • Chemical Physics
        • Catalysis
      • Earth & Coastal Sciences
        • Global Change
        • Atmospheric Science
          • Atmospheric Aerosols
          • Human-Earth System Interactions
          • Modeling Earth Systems
        • Coastal Science
        • Ecosystem Science
        • Subsurface Science
        • Terrestrial Aquatics
      • Materials Sciences
        • Materials in Extreme Environments
        • Precision Materials by Design
        • Science of Interfaces
        • Solid Phase Processing
          • Cold Spray
          • Friction Stir Welding & Processing
          • ShAPE
      • Nuclear & Particle Physics
        • Dark Matter
        • Fusion Energy Science
        • Neutrino Physics
      • Quantum Information Sciences
    • Energy Resiliency
      • Electric Grid Modernization
        • Emergency Response
        • Grid Analytics
          • AGM Program
          • Tools and Capabilities
        • Grid Architecture
        • Grid Cybersecurity
        • Grid Energy Storage
        • Transmission
        • Distribution
      • Energy Efficiency
        • Appliance and Equipment Standards
        • Building Energy Codes
        • Building Technologies
          • Advanced Building Controls
          • Advanced Lighting
          • Building-Grid Integration
        • Building and Grid Modeling
        • Commercial Buildings
        • Federal Buildings
          • Federal Performance Optimization
          • Resilience and Security
        • Residential Buildings
          • Building America Solution Center
          • Energy Efficient Technology Integration
          • Home Energy Score
        • Energy Efficient Technology Integration
      • Energy Storage
        • Electrochemical Energy Storage
        • Flexible Loads and Generation
        • Grid Integration, Controls, and Architecture
        • Regulation, Policy, and Valuation
        • Science Supporting Energy Storage
        • Chemical Energy Storage
      • Environmental Management
        • Waste Processing
        • Radiation Measurement
        • Environmental Remediation
      • Fossil Energy
        • Subsurface Energy Systems
        • Carbon Management
          • Carbon Capture
          • Carbon Storage
          • Carbon Utilization
        • Advanced Hydrocarbon Conversion
      • Nuclear Energy
        • Fuel Cycle Research
        • Advanced Reactors
        • Reactor Operations
        • Reactor Licensing
      • Renewable Energy
        • Solar Energy
        • Wind Energy
          • Wind Resource Characterization
          • Wildlife and Wind
          • Community Values and Ocean Co-Use
          • Wind Systems Integration
          • Wind Data Management
          • Distributed Wind
        • Marine Energy
          • Environmental Monitoring for Marine Energy
          • Marine Biofouling and Corrosion
          • Marine Energy Resource Characterization
          • Testing for Marine Energy
          • The Blue Economy
        • Hydropower
          • Environmental Performance of Hydropower
          • Hydropower Cybersecurity and Digitalization
          • Hydropower and the Electric Grid
          • Materials Science for Hydropower
          • Pumped Storage Hydropower
          • Water + Hydropower Planning
        • Grid Integration of Renewable Energy
        • Geothermal Energy
      • Transportation
        • Bioenergy Technologies
          • Algal Biofuels
          • Aviation Biofuels
          • Waste-to-Energy and Products
        • Hydrogen & Fuel Cells
        • Vehicle Technologies
          • Emission Control
          • Energy-Efficient Mobility Systems
          • Lightweight Materials
          • Vehicle Electrification
          • Vehicle Grid Integration
    • National Security
      • Chemical & Biothreat Signatures
        • Contraband Detection
        • Pathogen Science & Detection
        • Explosives Detection
        • Threat-Agnostic Biodefense
      • Cybersecurity
        • Discovery and Insight
        • Proactive Defense
        • Trusted Systems
      • Nuclear Material Science
      • Nuclear Nonproliferation
        • Radiological & Nuclear Detection
        • Nuclear Forensics
        • Ultra-Sensitive Nuclear Measurements
        • Nuclear Explosion Monitoring
        • Global Nuclear & Radiological Security
      • Stakeholder Engagement
        • Disaster Recovery
        • Global Collaborations
        • Legislative and Regulatory Analysis
        • Technical Training
      • Systems Integration & Deployment
        • Additive Manufacturing
        • Deployed Technologies
        • Rapid Prototyping
        • Systems Engineering
      • Threat Analysis
        • Advanced Wireless Security
          • 5G Security
          • RF Signal Detection & Exploitation
        • Internet of Things
        • Maritime Security
        • Millimeter Wave
        • Mission Risk and Resilience
    • Data Science & Computing
      • Artificial Intelligence
      • Graph and Data Analytics
      • Software Engineering
      • Computational Mathematics & Statistics
      • Future Computing Technologies
        • Adaptive Autonomous Systems
    • Publications & Reports
    • Featured Research
  • People
    • Inventors
    • Lab Leadership
    • Lab Fellows
    • Staff Accomplishments
  • Partner with PNNL
    • Education
      • Undergraduate Students
      • Graduate Students
      • Post-graduate Students
      • University Faculty
      • University Partnerships
      • K-12 Educators and Students
      • STEM Education
        • STEM Workforce Development
        • STEM Outreach
        • Meet the Team
      • Internships
    • Community
      • Regional Impact
      • Philanthropy
      • Volunteering
    • Industry
      • Available Technologies
      • Industry
      • Industry Partnerships
      • Licensing & Technology Transfer
      • Entrepreneurial Leave
      • Visual Intellectual Property Search (VIPS)
  • Facilities & Centers
    • All Facilities
      • Atmospheric Radiation Measurement User Facility
      • Electricity Infrastructure Operations Center
      • Energy Sciences Center
      • Environmental Molecular Sciences Laboratory
      • Grid Storage Launchpad
      • Institute for Integrated Catalysis
      • Interdiction Technology and Integration Laboratory
      • PNNL Portland Research Center
      • PNNL Seattle Research Center
      • PNNL-Sequim (Marine and Coastal Research)
      • Radiochemical Processing Laboratory
      • Shallow Underground Laboratory

Chemical Dynamics Initiative

  • Research
    • Data and Integration Activities
    • Nuclear Incident Characterization
    • Addictive Manufacturing
    • Functional Materials
  • Capabilities
  • People
  • Publications
  • News & Highlights

Breadcrumb

  1. Home
  2. Projects
  3. Chemical Dynamics Initiative

CDI Feedstock-Structure-Property Relationships in the Additive Manufacturing of High-Performance Thermoplastics

Return to Additive Manufacturing Use Case

PI: Zack Kennedy

Project Team: Josef Christ, Michelle Fenn, Tamas Varga, Anil Battu, Wenbin Kuang, Anne Arnold, W. Steven Rosenthal, Scott Muller, Chris Barrett, Timothy Pope, Mathew Thomas

Project Term: December 2019 to September 2021

Key Science Aims:

  • Establish polymer-focused additive manufacturing (AM) of high-performance materials using low-cost machines
  • Correlate material, and process signatures characteristic of laser sintering and material extrusion AM processes for provenance, increased fundamental understanding, and quality assurance purposes
  • Molecular dynamics modeling for polymer property prediction and method development in the calculation of polymer lifetimes through thermal analysis
Top panel: Example powder bed fusion testbed workflow with a particular emphasis on tracking performance and structural evolution occurring as a result of accelerated aging. Bottom panel: (left) Schematic of a build design used to produce polyamide-12 tensile bars in varying orientations and (center and right) the use of X-ray computed tomography to define microstructural evolution after steam aging.
Top panel: Example powder bed fusion testbed workflow with a particular emphasis on tracking performance and structural evolution occurring as a result of accelerated aging. Bottom panel: (left) Schematic of a build design used to produce polyamide-12 tensile bars in varying orientations and (center and right) the use of X-ray computed tomography to define microstructural evolution after steam aging.

Project Description: The purpose of this primarily experimental project is to develop polymer-focused AM testbeds for identifying and understanding the origin of build and material-specific signatures unique to AM technologies. This work further aims to define the structural and performance evolution that occurs when printed parts are subjected to real-world environments and post-processing treatments.

Polymer-based AM production methods have evolved from merely rapid prototyping technologies into more widely used manufacturing tools. High-performance feedstocks are now more readily available and processable on lower-cost instruments. Fundamentally, the structures and compositions of AM produced parts differ from that of their traditionally produced counterparts. Understanding these differences may lead to greater performance prediction and the design of new materials to generate AM parts with improved functionality.

Example areas of emphasis for the project team include:

  • Creating testbeds for systematic printing and analysis of laser-sintered and material extrusion parts.
  • Conducting targeted structural and spectroscopic analysis campaigns involving an array of complementary techniques. For example, coupling X-ray computed tomography analysis with dynamic mechanical analysis and tensile testing.
  • Providing data and parts to other Chemical Dynamics Initiative projects developing sintering models for predicting microstructure and those developing a new methodology for non-destructive evaluation.

The research team is leveraging high-performance computing infrastructure to accelerate analysis, specifically collaborating with the Chemical Dynamics Initiative integration team and through the use of Distributed Infrastructure with Remote Agent Control (DIRAC).

Increasing fundamental understanding on the crystallization dynamics of semi-crystalline thermoplastics and their composites as it relates to the initial AM build process and then the effects on in-service performance.

PNNL

  • Get in Touch
    • Contact
    • Careers
    • Doing Business
    • Environmental Reports
    • Security & Privacy
    • Vulnerability Disclosure Policy
  • Research
    • Scientific Discovery
    • Energy Resiliency
    • National Security
Subscribe to PNNL News
Department of Energy Logo Battelle Logo
Pacific Northwest National Laboratory (PNNL) is managed and operated by Battelle for the Department of Energy
  • YouTube
  • Facebook
  • X (formerly Twitter)
  • Instagram
  • LinkedIn