February 20, 2025
Journal Article
Variability of Eastern North Atlantic Summertime Marine Boundary Layer Clouds and Aerosols Across Different Synoptic Regimes Identified with Multiple Conditions
Abstract
This study estimates the meteorological covariations of aerosol and marine boundary layer (MBL) cloud properties in the Eastern North Atlantic (ENA) region, characterized by diverse synoptic conditions. Using a deep-learning-based clustering model with mid-level and surface daily meteorological conditions, we identified seven distinct synoptic regimes during the summer from 2016 to 2021. Our analysis, incorporating reanalysis data and satellite retrievals, shows that surface aerosols and MBL clouds exhibit clear regime-dependent characteristics, while lower tropospheric aerosols do not. Focusing on three regimes dominated by northerly winds, we analyzed the Atmospheric Radiation Measurement Program (ARM) ENA observations on Graciosa Island in the Azores. In the subtropical anticyclone regime, fewer cumulus clouds and more single-layer stratocumulus clouds with light drizzles are observed, along with the highest cloud droplet number concentration (Nd), surface Cloud Condensation Nuclei (CCN) and surface aerosol levels. The post-trough regime features more broken or multi-layer stratocumulus clouds with slightly higher surface rain rate, and lower Nd and surface CCN levels. The weak trough regime is characterized by the deepest MBL clouds, primarily cumulus and broken stratocumulus clouds, with the strongest surface rain rate and the lowest Nd, surface CCN and surface aerosol levels, indicating strong wet scavenging. The findings highlight the importance of considering the covariation of cloud and aerosol properties driven by large-scale regimes when assessing aerosol indirect effects using observations.Published: February 20, 2025