The extractability of uranium (U) from synthetic hydrous ferric oxides has been shown to decrease as a function of mineral ripening, consistent with the hypothesis that the ripening process decrease contaminant lability. To evaluate this process, three hydrous ferric oxide (HFO) suspensions were co-precipitated with uranyl (UO22+) and maintained at pH 7.0 ± 0.1. Uranyl was added to the HFO post-precipitation in a fourth suspension. Two suspensions also contained either co-precipitated silicate (Si-U-HFO) or phosphate (P-U-HFO). After precipitation of the HFOs, at time intervals of one week, one month, six months, one year, and 2 years, aliquots of the suspensions were contacted with five solutions for a range of time. The extracts were analyzed for U and iron (Fe). The results are consistent with the hypothesis that U and Fe extractability will decrease as the mineral phase ripens. All extracting solutions exhibited some degree of selectivity for U, as the proportional extraction of U exceeded that for congruent dissolution. Micro X-ray diffraction analysis indicates the transformation from an amorphous phase to a material containing substantial proportions of crystalline goethite and hematite, except the P-U-HFO which remained primarily amorphous. Further analysis of the co-precipitates by the Mössbauer technique and scanning electron microscopy (SEM) provides further evidence of mineralogic ripening
Revised: September 10, 2010 |
Published: March 1, 2009
Citation
Smith S.C., M. Douglas, D.A. Moore, R.K. Kukkadapu, and B.W. Arey. 2009.Uranium Extraction From Laboratory Synthesized, Uranium-Doped Hydrous Ferric Oxides.Environmental Science & Technology 43.PNNL-SA-62261.