May 10, 2022
Conference Paper

Understanding the Elastic, Plastic, and Damage Features in Fracturing of Self-reinforced Thermoplastic Composites via Non-destructive Digital Imaging Correlation

Abstract

This work demonstrated the utilization of non-destructive Digital Imaging Correlation (DIC) method to characterize the elastic, plastic, and damage features during the Mode I intra-laminar fracturing process of self-reinforced thermoplastic composites by using a self-reinforced polypropylene (PP) composite as an example. The DIC results clearly showed the development of huge plastic zone (PZ) and non-negligible Fracture Process Zone (FPZ) in front of the notch tip during the fracturing process, and the geometries and sizes of the foregoing zones at the peak load were further quantified. Such an interesting fracturing behavior of self-reinforced thermoplastic composites is way different from brittle materials (e.g., glass, acrylic, etc.), ductile materials (e.g., aluminum, steel, etc.), and even quasi-brittle materials (e.g., concrete, nanoparticle-reinforced composites, tough ceramics, wood, cement, carbon/glass fiber-reinforced polymers, etc.). Thus, understanding the elastic, plastic, and damage features is the first step before better characterizing the material fracture properties of self-reinforced thermoplastic composites through new analytical methods and computational modeling. These efforts are of utmost importance for wide applications of self-reinforced thermoplastic composites in various engineering fields in the future.

Published: May 10, 2022

Citation

Qiao Y., M. Pallaka, E.K. Nickerson, L.D. Fring, and K.L. Simmons. 2022. Understanding the Elastic, Plastic, and Damage Features in Fracturing of Self-reinforced Thermoplastic Composites via Non-destructive Digital Imaging Correlation. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI, March 6-April 11, 2022, Long Beach, CA. Proceedings of the SPIE, edited by H.F. Wu, et al, 1204707, Paper No. 1204707. Bellingham, Washington:SPIE. PNNL-SA-170916. doi:10.1117/12.2615378

Research topics