September 2, 2009
Journal Article

Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory

Abstract

We describe the use of Cl K-edge X-ray Absorption Spectroscopy (XAS) and both ground state and time-dependent hybrid density functional theory (DFT) to probe electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C5Me5)2MCl2 (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; and U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. We report direct experimental evidence for covalency in M-Cl bonding, including actinides, and offer insight into the relative roles of the valence f- and dorbitals in these systems. The Cl K-edge XAS data for the group IV transition metals, 1 – 3, show slight decreases in covalency in M-Cl bonding with increasing principal quantum number, in the order Ti > Zr > Hf. The percent Cl 3p character per M-Cl bond was experimentally determined to be 25, 23, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a shoulder on the white line for (C5Me5)2ThCl2, 4, and distinct, but weak pre-edge features for 2 (C5Me5)2UCl2, 5. The percent Cl 3p character in Th-Cl bonds in 4 was determined to be 14 %, with high uncertainty, while the U-Cl bonds in 5 contains 9 % Cl 3p character. The magnitudes of both values are approximately half what was observed for the transition metal complexes in this class of bent metallocene dichlorides. Using the hybrid DFT calculations as a guide to interpret the experimental Cl K-edge XAS, these experiments suggest that when evaluating An- Cl bonding, both 5f- and 6d-orbitals should be considered. For (C5Me5)2ThCl2, the calculations and XAS indicate that the 5f- and 6d-orbitals are nearly degenerate and heavily mixed. In contrast, the 5f- and 6d-orbitals in (C5Me5)2UCl2 are no longer degenerate, and fall in two distinct energy groupings. The 5f-orbitals are lowest in energy and split into a 5-over-2 pattern with the high lying U 6d-orbitals split in a 4-over-1 pattern, the latter of which is similar to the dorbital splitting in group IV transition metal (C5R5)2MCl2 (R = H, Me) compounds. Time dependent-DFT (TD-DFT) was used to calculate the energies and intensities of Cl 1s transitions into empty metal based orbitals containing Cl 3p character, and provide simulated Cl K-edge XAS spectra for 1 - 4. However, for 5, which has two unpaired electrons, analogous information was obtained from transition dipole calculations using ground state Kohn-Sham orbitals. The simulations provide additional confidence in the interpretation of spectra based on ground state calculations. Overall, this study demonstrates that Cl K-edge XAS and DFT calculations represent powerful tools that can be used to evaluate electronic structure and covalency in actinide metal-ligand bonding. In addition, these results provide a framework that can be used in future studies to evaluate actinide covalency in compounds that contain transuranic elements.

Revised: June 17, 2011 | Published: September 2, 2009

Citation

Kozimor S.A., P. Yang, E.R. Batista, K.S. Boland, C.J. Burns, D.L. Clark, and S.D. Conradson, et al. 2009. Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory. Journal of the American Chemical Society 131, no. 34:12125-12136. PNNL-SA-65228.