February 15, 2004
Journal Article

Third-order Douglas-Kroll Relativistic Coupled-Cluster Theory through Connected Single, Double, Triple, and Quadruple Substitutions: Applications to Diatomic and Triatomic Hydrides

Abstract

Coupled-cluster methods including through and up to the connected single, double, triple, and quadruple substitutions (CCSD, CCSDT, and CCSDTQ) have been automatically derived and implemented for sequential and parallel executions for use in conjunction with a one-component third-order Douglas-Kroll (DK3) approximation for relativistic corrections. A combination of the converging electron-correlation methods, the accurate relativistic reference wave functions, and the use of systematic basis sets tailored to the relativistic approximation has been shown to predict the experimental singlet-triplet separations within 0.02 eV (0.5 kcal/mol) for five triatomic hydrides (CH2, NH2+, SiH2, PH2+, and AsH2+), the experimental bond lengths within 0.002 angstroms, rotational constants within 0.02 cm-1, vibration-rotation constants within 0.01 cm-1, centrifugal distortion constants within 2 %, harmonic vibration frequencies within 9 cm-1 (0.4 %), anharmonic vibrational constants within 2 cm-1, and dissociation energies within 0.03 eV (0.8 kcal/mol) for twenty diatomic hydrides (BH, CH, NH, OH, FH, AlH, SiH, PH, SH, ClH, GaH, GeH, AsH, SeH, BrH, InH, SnH, SbH, TeH, and IH) containing main-group elements across the second through fifth periods of the periodic table. In these calculations, spin-orbit effects on dissociation energies, which were assumed to be additive, were estimated from the measured spin-orbit coupling constants of atoms and diatomic molecules, and an electronic energy in the complete-basis-set, complete-electron-correlation limit has been extrapolated by the formula which was in turn based on the exponential-Gaussian extrapolation formula of the basis set dependence.

Revised: April 7, 2011 | Published: February 15, 2004

Citation

Hirata S., T. Yanai, W.A. De Jong, T. Nakajima, and K. Hirao. 2004. Third-order Douglas-Kroll Relativistic Coupled-Cluster Theory through Connected Single, Double, Triple, and Quadruple Substitutions: Applications to Diatomic and Triatomic Hydrides. Journal of Chemical Physics 120, no. 7:3297-3310. PNNL-SA-39824.