September 1, 2000
Conference Paper

A Symmetry Invariant First-Order Remapping Methodology

Abstract

Numerous attempts have been made to construct efficient two-dimensional (2D) and three-dimensional (3D) symmetry invariant remapping algorithms. We present a computational methodology that efficiently remaps the conserved and non-conserved physical constitutive quantities of arbitrary 2D and 3D meshes. Symmetry invariant remapping is defined by a family of geometrically scale invariant maps of mixed volume measures from the mesh cells of one arbitrary grid onto the mesh cells of another arbitrary grid. We demonstrate that the generation of time-dependent, moving, multi-dimensional grids can be viewed as the composition of sets of geometrically scale invariant mappings. Conservative algorithms are presented that are both first-order accurate and converge unconditionally.

Revised: November 10, 2005 | Published: September 1, 2000

Citation

Oliveira J.S., and H.E. Trease. 2000. A Symmetry Invariant First-Order Remapping Methodology. In NUMERICAL GRID GENERATION IN COMPUTATIONAL FIELD SIMULATIONS, 7th, edited by B.K. Soni, 367-374. Mississippi State, Mississippi:International Society of Grid Generation. PNNL-SA-33376.