Characteristics of the summertime urban planetary boundary layer (PBL) were investigated for the arid Phoenix (Arizona, USA) metropolitan region using simulated data as well as observations from two field campaigns conducted in May/June 1998 and June 2001. A version of the fifth-generation PSU/NCAR mesoscale meteorological model (MM5) was applied that included a refined land cover classification and updated land use/cover data for Phoenix as well as bulk approaches of characteristics of the urban surface energy balance. Planetary boundary layer processes were simulated by a modified version of MM5¹s non-local closure Medium Range Forecast (MRF) scheme that was enhanced by new surface flux and non-local mixing approaches to better capture near-surface wind speeds and the evolution of the planetary boundary layer. Simulated potential temperature profiles were tested against radiosonde data, indicating that the PBL scheme was able to simulate the evolution and height of the PBL with good accuracy and better than the original MRF scheme. During both simulation periods, MM5¹s performance for near-surface meteorological variables in the urban area was consistently improved by the modifications applied to the standard MM5. The results showed that the urban PBL evolved faster after sunrise than the rural PBL due to the reminiscence of the nighttime urban heat island and its influence on the flow field and surface sensible heat fluxes. During afternoon hours the urban PBL was lower than the rural PBL due to the higher water availability for evaporation in the urban area and accompanying lower sensible heat fluxes. No consistent differences between the urban and rural PBL were detected during nighttime because of deviations in air flow and accompanying wind shear.
Revised: April 30, 2008 |
Published: March 15, 2008
Citation
Grossman-Clarke S., Y. Liu, J.A. Zehnder, and J.D. Fast. 2008.Simulations of the Urban Planetary Boundary Layer in an Arid Metropolitan Area.Journal of Applied Meteorology and Climatology 47, no. 3:752-768.PNNL-SA-51682.