June 15, 2005
Journal Article

A Simple Parameterization Coupling the Convective Daytime Boundary Layer and Fair-Weather Cumuli

Abstract

A new parameterization for boundary-layer cumulus clouds, called the Cumulus Potential (CuP) scheme is introduced. This scheme uses Joint Probability Density Functions (JPDFs) of virtual potential temperature and water-vapor mixing ratio, as well as the mean vertical profiles of virtual potential temperature to predict the amount and size distribution of boundary-layer cloud cover. This model considers the diversity of air parcels over a heterogeneous surface, and recognizes that some parcels rise above their lifting condensation level to become cumulus, while other parcels might rise as non-cloud updrafts. This model has several unique features: (1) cloud cover is determined from the boundary-layer JPDF of virtual potential temperature vs. water-vapor mixing ratio , (2) clear and cloudy thermals are allowed to coexist at the same altitude, and (3) a range of cloud-base heights, cloud-top heights, and cloud thicknesses are predicted within any one cloud field, as observed. Using data from Boundary Layer Experiment 1996, and a model intercomparsion study using Large Eddy Simulation (LES) based on BOMEX, it is shown that the CuP model does a good job predicting cloud-base height and cloud-top height. The model also shows promise in predicting cloud cover, and is found to give better cloud-cover estimates than three other cumulus parameterizations: one based on relative humidity, a statistical scheme based on the saturation deficit, and a slab model.

Revised: May 18, 2011 | Published: June 15, 2005

Citation

Berg L.K., and R.B. Stull. 2005. A Simple Parameterization Coupling the Convective Daytime Boundary Layer and Fair-Weather Cumuli. Journal of the Atmospheric Sciences 62, no. 6:1976-1988. PNNL-SA-40825.