This paper examines sensitivity of regional climate simulations to spatial resolution using a 20-year simulation of the western U.S. at 40 km resolution and two 5-year simulations at 13 km resolution for the Pacific Northwest and California. The regional climate simulation at 40 km resolution shows a lack of precipitation along coastal hills, good agreements with observations on the windward slopes of the Cascades and Sierra, but over-prediction on the leeside and the basins beyond. Snowpack is grossly under-predicted throughout the western U.S. when compared against observations at snotel sites, which are typically located at the higher altitudes. Comparisons of the 40 km and 13 km resolution simulations suggest that during winter, higher spatial resolution mainly improves the simulation of precipitation in the coastal hills and basins. Along the Cascades and the Sierra Range, however, precipitation is strongly amplified at the higher spatial resolution and compares less favorably with observations. Higher resolution generally improves the spatial distribution of precipitation to yield higher spatial correlation when comparing the simulations to observation. During summer, higher resolution improves not only spatial distribution but also regional mean precipitation.
Revised: September 30, 2020 |
Published: December 1, 2003
Citation
Leung L., and Y. Qian. 2003.The Sensitivity of Precipitation and Snowpack Simulations to Model Resolution via Nesting in Regions of Complex Terrain.Journal of Hydrometeorology 4, no. 6:1025-1043.PNNL-SA-37337.