Most methods currently being used to recover Fe0-core/oxide-shell nanoparticles from solutions (including the solvents they are synthesized or stored in) are potentially problematic because they may alter the particle composition (e.g., depositing salts formed from solutes) or leave the particles prone to transformations during subsequent storage and handling (e.g., due to residual moisture). In this study, several methods for recovery of nanoparticles from aqueous solution were studied to determine how they affect the structure and reactivity of the recovered materials. Simple washing of the nanoparticles during vacuum filtration (i.e., “flash drying”) can leave up to ~17 weight percent residual moisture. Modeling calculations suggest this moisture is mostly capillary or matric water held between particles and particle aggregates, which can be removed by drying for short periods at relative vapor pressures below 0.9. Flash drying followed by vacuum drying, all under N2, leaves no detectable residue from precipitation of solutes (detectable by X-ray photoelectron spectroscopy, XPS), no significant changes in overall particle composition or structure (determined by transmission electron microscopy, TEM), and negligible residual moisture (by thermogravimetric analysis, TGA). While this improved flash-drying protocol may be the preferred method for recovering nanoparticles for many purposes, we found that Fe0-core/oxide-shell nanoparticles still exhibit gradual aging during storage when characterized electrochemically with voltammetry.
Revised: May 16, 2011 |
Published: May 15, 2011
Citation
Nurmi J., V. Sarathy, P.G. Tratnyek, D.R. Baer, J.E. Amonette, and A.J. Karkamkar. 2011.Recovery of Iron/Iron Oxide Nanoparticles from Solution: Comparison of Methods and their Effects.Journal of Nanoparticle Research 13, no. 5:1937-1952.PNNL-SA-69948.doi:10.1007/s11051-010-9946-x