Comprehensive MS analysis of peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and their utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we set off by evaluating the results of several popular MS/MS database search engines including MS-GF+, SEQUEST and MS-Align+ for peptidomics data analysis, followed by identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our result demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from the MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing value for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage than AMT. Taken together, we propose an optimal informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT) for identification and label-free quantification for high-throughput, comprehensive and quantitative peptidomics analysis.
Revised: January 27, 2016 |
Published: December 26, 2015
Citation
Wu C., M.E. Monroe, Z. Xu, G.W. Slysz, S.H. Payne, K.D. Rodland, and T. Liu, et al. 2015.An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics.Journal of the American Society for Mass Spectrometry 26, no. 12:2002-2008.PNNL-SA-108032.doi:10.1007/s13361-015-1169-z