Advanced ultrasupercritical (A-USC) steam plants are designed to operate at high temperatures and pressures due to the necessity for higher operational efficiency. The extreme operating conditions of A-USC requires the deployment of precipitation strengthened Ni-base alloys that exhibit elevated temperature strength and good fabricability. Fusion welding of precipitation strengthened nickel alloys lead to solidification cracking in fusion zone and/or liquation cracking in heat affected zone. Therefore, an alternative non-melting welding technique is a necessity to efficiently join nickel alloys. In the current study, friction stir welding, a solid state joining technique was implemented on a precipitation strengthened nickel-based superalloy, Haynes 282. Detailed microstructural and mechanical properties characterization was carried out. The processed region exhibited wrought, fine-grained microstructure, absence of weld defects such as voids and cracks and absence of elemental segregation. Both hardness and cross-weld tensile tests demonstrated that the weld region was stronger than the base material. And the cross-weld tensile samples failed in the base material. Based on joint efficiency analysis, friction stir welded Haynes 282 outperformed fusion welds.
Published: January 13, 2023
Citation
Komarasamy M., C.B. Smith, J.T. Darsell, W. Choi, S. Jana, and G.J. Grant. 2021.Microstructure and mechanical properties of friction stir welded Haynes 282.Materials Characterization 182.PNNL-SA-161637.doi:10.1016/j.matchar.2021.111558