Malignant melanoma is the most lethal form of skin cancer. Current chemotherapy and external beam radiation therapy regimens are ineffective agents against melanoma, as shown by a 10-year survival rate for patients with disseminated disease of approximately 5% (reference?). In this study, the unique combination of a melanoma targeting peptide and an in vivo generated a-particle emitting radioisotope was investigated for its melanoma therapy potential. Alpha-radiation is densely ionizing and energy is locally absorbed, resulting in high concentrations of destructive free radicals and irreparable DNA double strand breaks. This high linear-energy-transfer overcomes radiation resistant tumor cells and oxygen-enhancement effects. The melanoma targeting peptide DOTA-Re(Arg11)CCMSH was radiolabeled with 212Pb, the parent of 212Bi, which decays via alpha and beta decay. Biodistribution and therapy studies were performed in the B16/F1 melanoma bearing C57 mouse flank tumor model. 212Pb[DOTA]-Re(Arg11)CCMSH exhibited rapid tumor uptake and extended retention coupled with rapid whole body disappearance. Radiation dose delivered to the tumor was estimated to be 61 cGy/uCi 212Pb administered. Treatment of melanoma-bearing mice with 50, 100 and 200 uCi of 212Pb[DOTA]-Re(Arg11)CCMSH extended mean survival of mice to 22, 28, and 49.8 days, respectively, compared to the 14.6 day mean survival of the placebo control group. Forty-five percent of the mice receiving 200 uCi survived the study disease-free.
Revised: August 15, 2005 |
Published: August 1, 2005
Citation
Miao Y., M. Hylarides, D.R. Fisher, T. Shelton, H.A. Moore, D.W. Wester, and A.R. Fritzberg, et al. 2005.Melanoma Therapy via Peptide-Targeted a-Radiation.Clinical Cancer Research 11, no. 15:5616-5621. PNWD-SA-6641.