February 15, 2024
Journal Article
Machine learning methods for particle stress development in suspension Poiseuille flows
Abstract
Numerical simulations are used to study the dynamics of a developing suspension Poiseuille flow with monodispersed and bidispersed neutrally buoyant particles in a planar channel, and machine learning is applied to learn the evolving stresses of the developing suspension. The particle stresses and pressure develop on a slower time scale than the volume fraction, indicating that once the particles reach a steady volume fraction profile, they rearrange to minimize the contact pressure on each particle. We consider how the stress development leads to particle migration, time scales for stress development, and present a new physics-informed Galerkin neural network that allows for learning the particle stresses when direct measurements are not possible. The particle fluxes are compared with the Suspension Balance Model with good agreement. We show that when stress measurements are possible, the MOR-physics operator learning method can also capture the particle stresses.Published: February 15, 2024