January 7, 2025
Journal Article
Insights into posttranslational regulation of skeletal muscle contractile function by the acetyltransferases, p300 and CBP
Abstract
Mice with skeletal muscle-specific inducible double knockout of the lysine acetyltransferases, p300 (E1A binding protein p300) and CBP (cAMP-response element-binding protein binding protein), referred to as i-mPCKO, demonstrate a dramatic loss of contractile function in skeletal muscle within days of induction, and ultimately mortality. Given that many proteins involved in ATP generation and cross-bridge cycling are acetylated, we investigated whether these processes are dysregulated in skeletal muscle from i-mPCKO mice and thus could underlie the rapid loss of muscle contractile function. Just 4-5 days after inducing knockout of p300 and CBP in skeletal muscle form adult i-mPCKO mice, there was ~90% reduction in ex vivo contractile function in the extensor digitorum longus (EDL) and a ~65% reduction in in vivo ankle dorsiflexion torque, as compared to wildtype (WT; i.e. Cre negative) littermates. Despite the large number of acetylation sites on mitochondrial proteins, there were no significant genotype-driven differences in mitochondrial specific pathway enrichment of the proteome, intermyofibrillar mitochondrial volume or mitochondrial respiratory function. As it relates to cross-bridge cycling, remarkably, the overt loss of contractile function in i-mPCKO muscle was reversed in permeabilized fibers supplied with exogenous Ca2+ and ATP, with active tension being similar between i-mPCKO and WT mice, regardless of Ca2+ concentration. Actin-myosin motility was also similar in skeletal muscle from i-mPCKO and WT mice. In conclusion, neither mitochondrial abundance/function, nor myosin and actin cross-bridge cycling, are the underlying driver of contractile dysfunction in i-mPCKO mice.Published: January 7, 2025