This paper examines the effects of slightly soluble organics on aerosol activation in a parcel of air rising adiabatically. Slightly soluble organics can affect aerosol activation by three mechanisms: lowering surface tension, altering the bulk hygroscopicity, and delaying the growth of particles due to their lower solubilities. Here, we address the third mechanism by simulating the activation process of aerosol particles modeled using a single lognormal size distribution and consisting of an internal uniform chemical mixture of adipic acid (representing slightly soluble organics having extremely low solubility) and ammonium sulfate. The simulations were carried out using measured solubility of adipic acid spanning a wide range of physical and dynamical parameters. The same conditions were re-simulated but assuming fully soluble aerosols. Results of the simulations show that although that the low solubility of the adipic acid alters Köhler curves and increases critical supersaturation of the smaller particles (Köhler curves of the larger particles are not effected since these particles are completely dissolved at the initial supersaturation of zero), it has minimal to no effect on the parcel’s supersaturation except for particles consisting of more than 95% adipic acid. Accordingly, since aerosols in realistic atmospheric conditions do not contain more than 90% organics, we conclude that it is not necessary to retune the parameterization of aerosol activation previously developed and modified to address the other two mechanisms. The slightly soluble organics can thus be assumed to be fully soluble for the purpose of predicting the fraction of activation and the maximum supersaturation with negligible error.
Revised: June 23, 2011 |
Published: March 22, 2005
Citation
Abdul-Razzak H., and S.J. Ghan. 2005.Influence of Slightly Soluble Organics on Aerosol Activation.Journal of Geophysical Research. D. (Atmospheres) 110.PNNL-SA-42380.doi:10.1029/2004JD005324