April 7, 2015
Journal Article

Impacts of Organic Ligands on Forsterite Reactivity in Supercritical CO2 Fluids


Subsurface injection of CO2 for enhanced hydrocarbon recovery, hydraulic fracturing of unconventional reservoirs, and geologic carbon sequestration produces a complex geochemical setting in which CO2-dominated fluids containing dissolved water and organic compounds interact with rocks and minerals. The details of these reactions are relatively unknown and benefit from additional experimentally derived data. In this study, we utilized an in situ X-ray diffraction technique to examine the carbonation reactions of forsterite (Mg2SiO4) during exposure to supercritical CO2 (scCO2) that had been equilibrated with aqueous solutions of acetate, oxalate, malonate, or citrate at 50 °C and 90 bar. The organics affected the relative abundances of the crystalline reaction products, nesquehonite (MgCO3·3H2O) and magnesite (MgCO3), likely due to enhanced dehydration of the Mg2+ cations by the organic ligands. These results also indicate that the scCO2 solvated and transported the organic ligands to the forsterite surface. This phenomenon has profound implications for mineral transformations and mass transfer in the upper crust.

Revised: February 13, 2020 | Published: April 7, 2015


Miller Q.R., J. Kaszuba, H.T. Schaef, M.E. Bowden, and B.P. McGrail. 2015. Impacts of Organic Ligands on Forsterite Reactivity in Supercritical CO2 Fluids. Environmental Science & Technology 49, no. 7:4724–4734. PNNL-SA-109524. doi:10.1021/es506065d