March 4, 2004
Journal Article

Finite Element Method Simulations of the Near-Field Enhancement at the Vicinity of Fractal Rough Metallic Surfaces

Abstract

Near-field optical enhancement at metal surfaces and methods such as surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS), fluorescent quenching and enhancement, and various near-field scanning microscopies (NSOM) all depend on a metal’s surface properties, mainly on its morphology and SPR resonant frequency. We report on simulations of the influence of different surface morphologies on electromagnetic field enhancements at the rough surfaces of noble metals and also evaluate the optimal conditions for the generation of a surface-enhanced Raman signal of absorbed species on a metallic substrate. All simulations were performed with a classical electrodynamics approach using the full set of Maxwell’s equations, which were solved with the three-dimensional finite element method (FEM). Two different classes of surfaces where modeled using fractals, representing diffusion limited aggregation growth dendritic structures, such as on eon the surface of electrodes, and second one representing the sponge-like structure used to model surfaces of particles with high porosity, such as metal coated catalyst supports. The simulations depict the high inhomogeneity of an enhanced electromagnetic field as both a field enhancement and field attenuation near the surface. While the diffusion limited aggregation dendritical fractals enhanced the near-field electromagnetic field, the sponge fractals significantly reduced the local electromagnetic field intensity. Moreover, the fractal orders of the fractal objects did not significantly alter the total enhancement, and the distribution of a near-field enhancement was essentially invariant to the changes in the angle of an incoming laser beam.

Revised: November 10, 2005 | Published: March 4, 2004

Citation

Micic M., N.A. Klymyshyn, and H.P. Lu. 2004. Finite Element Method Simulations of the Near-Field Enhancement at the Vicinity of Fractal Rough Metallic Surfaces. Journal of Physical Chemistry B 108, no. 9:2939-2947. PNNL-SA-38976.