May 15, 2003
Journal Article

Equilibrium and Kinetic Adsorption of Bacteria on Alluvial Sand and Surface Thermodynamic Interpretation

Abstract

Equilibrium and kinetic adsorption of Echerichia coli HB 101, E. coli JM 109, Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas sp. on alluvial sand from the Canadian River alluvium (Norman, OK) was investigated through column experiments. Equilibrium adsorption of these five bacterial strains followed the Freundlich expression and was a function of zero energy points, an indication of the zero energy buffer zone. Among the microorganisms studied, P. putida had the greatest equilibrium adsorption (162.4 x 108 cell/g sediment with a microbial injectate concentration of 108 cell/mL), followed by Pseudomonas sp. (127.9 x 108 cell/g sediment), E. coli HB 101 (62.8 x 108 cell/g sediment), E. coli JM 109 (58.4 x 108 cell/g sediment), and P. fluorescens (42.6 x 108 cell/g sediment). The first-order kinetic adsorption rate coefficient was an exponential function of the total interaction free energy between bacteria and sediment evaluated at the primary minimum, (PM). E. coli HB 101 had the greatest kinetic adsorption rate coefficient on the sediment (5.10 h-1), followed by E. coli JM 109 (4.52 h-1), P. fluorescens (2.12 h-1), P. putida (2.04 h-1), and Pseudomonas sp. (1.34 h-1).

Revised: November 10, 2005 | Published: May 15, 2003

Citation

Chen G., M.L. Rockhold, and K.A. Strevett. 2003. Equilibrium and Kinetic Adsorption of Bacteria on Alluvial Sand and Surface Thermodynamic Interpretation. Research in Microbiology 154. PNNL-SA-39284.