October 10, 2013
Journal Article

Electrochemical Kinetics and Performance of Layered Composite
Cathode Material Li[Li0.2Ni0.2Mn0.6]O2

Abstract

Lithium-rich, manganese-rich (LMR) layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2 has been successfully prepared by a co-precipitation method and its structure is confirmed by XRD characterization. The material delivers a high discharge capacity of 281 mAh g-1, when charged and discharged at a low current density of 10 mA g-1. However, significant increase of cell polarization and decrease of discharge capacity are observed at voltages below 3.5 V with increasing current densities. Galvanostatic intermittent titration technique (GITT) analysis demonstrates that lithium ion intercalation/de-intercalation reactions in this material are kinetically controlled by Li2MnO3 and its activated MnO2 component. The relationship between the electrochemical kinetics and rate performance as well as cycling stability has been systematically investigated. High discharge capacity of 149 mAh g-1 can be achieved at 10 C charge rate and C/10 discharge rate. The result demonstrates that the Li2MnO3 based material could withstand high charge rate (except initial activation process), which is very promising for practical applications. A lower discharge current density is preferred to overcome the kinetic barrier of lithium ion intercalation into MnO2 component, in order to achieve higher discharge capacity even at high charge rates.

Revised: August 12, 2014 | Published: October 10, 2013

Citation

Zheng J., W. Shi, M. Gu, J. Xiao, P. Zuo, C.M. Wang, and J. Zhang. 2013. "Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li0.2Ni0.2Mn0.6]O2." Journal of the Electrochemical Society 160, no. 11:A2212-A2219. PNNL-SA-96643. doi:10.1149/2.090311jes