February 4, 2008
Conference Paper

Effects of Sludge Particle Size and Density on Hanford Waste Processing


The U.S. Department of Energy Office of River Protection’s Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site in southeastern Washington State. Piping and pumps have been selected to transport the high-level waste (HLW) slurries in the WTP. Pipeline critical-velocity calculations for these systems require the input of a bounding particle size and density. Various approaches based on statistical analyses have been used in the past to provide an estimate of this bounding size and density. In this paper, representative particle size and density distributions (PSDDs) of Hanford waste insoluble solids have been developed based on a new approach that relates measured particle-size distributions (PSDs) to solid-phase compounds. This work was achieved through extensive review of available Hanford waste PSDs and solid-phase compound data. Composite PSDs representing the waste in up to 19 Hanford waste tanks were developed, and the insoluble solid-phase compounds for the 177 Hanford waste tanks, their relative fractions, crystal densities, and particle size and shape were developed. With such a large combination of particle sizes and particle densities, a Monte Carlo simulation approach was used to model the PSDDs. Further detail was added by including an agglomeration of these compounds where the agglomerate density was modeled with a fractal dimension relation. The Monte Carlo simulations were constrained to hold the following relationships: 1) the composite PSDs are reproduced, 2) the solid-phase compound mass fractions are reproduced, 3) the expected in situ bulk-solids density is qualitatively reproduced, and 4) a representative fraction of the sludge volume comprising agglomerates is qualitatively reproduced to typical Hanford waste values. Four PSDDs were developed and evaluated. These four PSDD scenarios correspond to permutations where the master PSD was sonicated or not-sonicated before being analyzed and whether agglomerates existed or not in the PSD samples. When critical pipeline velocity calculations are applied to these results, several percent of Hanford tank waste sludge are expected to exceed pipeline velocities of 4 to 6 ft/sec range appear to be compatible with the Hanford sludge in 3-inch pipes.

Revised: July 9, 2010 | Published: February 4, 2008


Poloski A.P., B.E. Wells, L.A. Mahoney, R.C. Daniel, J.M. Tingey, and S.K. Cooley. 2008. Effects of Sludge Particle Size and Density on Hanford Waste Processing. In Waste Management '08: Phoenix Rising: Moving Forward in Waste Management, Paper No. 8347. Tucson, Arizona:WM Symposium, Inc. PNNL-SA-58186.