February 15, 2012
Journal Article

Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data

Abstract

The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol indirect effect based on cloud and aerosol data retrieved from A-Train satellite observations have been employed in the climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols generally increase with increasing aerosol optical depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced, since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing could exceed aerosol forcing. With the aerosol indirect effect, the net cloud forcing is generally reduced for ice water path (IWP) larger than 20 g m-2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect result in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation seems to be associated with enhanced ice water contents in this region. The 200 mb radiative heating rate shows more cooling with the aerosol indirect effect since greater cooling is produced at the cloud top with smaller ice crystal size. The 500 mb omega indicates strong upward motion, which, together with the increased cooling effect, results in the increased ice water contents. Adding the aerosol direct effect into the model simulation reduces the precipitation in the normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of aerosol indirect effect using a GCM in connection with A-train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily incorporated for application to any other GCMs.

Revised: February 16, 2012 | Published: February 15, 2012

Citation

Gu Y., K.N. Liou, J. Jiang, H. Su, and X. Liu. 2012. Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data. Atmospheric Chemistry and Physics 12, no. 4:1667–1679. PNNL-SA-85133. doi:10.5194/acp-12-1667-2012