November 1, 2003
Journal Article

Comparing Surfaces and Engineered Interfaces using Self-Assembled Monolayers (SAMs) and Injected SAMs Silanes

Abstract

The objective of this study was to show a comparison between property changes by formation of a self-assembled monolayer on the surface of PPG synthetic precipitated silica, which is a technique developed at PNNL, and by adding the SAMs silane chemical directly into the mixing bowl. These coatings have the potential to greatly increase the bond strength and enhance other properties between the particle and the rubber matrix of a rubber compound. Tensile testing measured peak stress and elongation at break. The increase in tensile strength shows how well the polymer-filler interfacial adhesion is doing. The study used five different SAM systems with a sulfur cured styrene butadiene rubber (SBR) tire rubber formulation. The three propylsilanes were propyl triethoxysilane, allyl triethoxysilane and 3-mercaptopropyl triethoxysilane. Five combinations of silanes were used in this study. The application of the silanes were 100% propyl triethoxy silane (100% Alkyl); a 10/90 mixture of allyl and propyl triethoxy silanes (10% vinyl/90% alkyl); a 50/50 mixture of the allyl and propyl (50% vinyl/50% alkyl); a 10/90mixture of 3-mercaptopropyl trimethoxysilane and propyl trimethoxysilane (10% mercaptan/90% alkyl) and lastly a 50/50 3-mercaptopropyl and propylsilanes (50% mercaptan/alkyl). The data not only shows improvement with SAMs, the peak stress data (ultimate strength) shows that the by changing the amount of silane content can change the physical properties

Revised: November 10, 2005 | Published: November 1, 2003

Citation

Morris M.J., and K.L. Simmons. 2003. Comparing Surfaces and Engineered Interfaces using Self-Assembled Monolayers (SAMs) and Injected SAMs Silanes. Journal of Undergraduate Research. PNNL-SA-39478.