We report the first examples of excited-state luminescence from technetium complexes. We have examined a series of trans-dioxo complexes of Tc(V) and a Tc(I/II) phosphine complex and compare their respective photophysical properties with the corresponding rhenium analogues. When excited with a 415 nm laser, the Tc(V) complexes luminesce in the 700-800 nm range and have excited state lifetimes in the range of several microseconds at room temperature. The low-temperature luminescence spectra of the technetium complexes have also been investigated. Distinct vibrational band progressions are resolved in the low-temperature luminescence spectra. Excited state lifetimes at 5 K vary between tens of microseconds to several milliseconds for the dioxo-technetium complexes. In addition, a previously known Tc(I) complex, [Tc(DMPE) 3]+ which has been used as a radiography imaging agent has been demonstrated in our labs to fluoresce in the visible wavelength region upon a one-electron reversible oxidation to form the Tc(II), [Tc(DMPE)3]2+ complex in aqueous solution. The luminescence of [Tc(DMPE)3]2+ was observed by illuminating the solution complex with a 404 nm excitation while performing the reversible electrochemical experiment. In a recent application, we have focused on making thin chemically-selective films for sensing radioactive technetium compounds and in this effort have developed a fluorescence-based spectroelectrochemical sensor. Characterization of the new dioxo-technetium(V) and technetium(II)phosphine excited states as well as application of the respective chromophores for use in a spectroelectrochemical sensor for pertechnetate will be discussed.
Revised: May 17, 2011 |
Published: June 1, 2006
Citation
Bryan S.A., A.S. Del Negro, Z. Wang, T.L. Hubler, W.R. Heineman, C.J. Seliskar, and B.P. Sullivan. 2006.Characterization of trans-dioxotechnetium(V) and technetium(II)phosphine excited states and spectroelectrochemical detection of pertechnetate. In 61st Northwest Regional Meeting of the American Chemical Society, June 25-29, 2006, Reno, NV. Washington Dc:American Chemical Society.PNNL-SA-50359.