Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large scale RNA-Seq data sets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. Results: We report on a comprehensive study of target coverage and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive target coverage of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, less than 30% of all transcripts could be quantified reliably with a relative error
Published: July 1, 2011
Citation
Labaj P.P., G.G. Leparc, B.E. Linggi, L.M. Markillie, H.S. Wiley, and D.P. Kreil. 2011.Characterization and Improvement of RNA-Seq Precision in Quantitative Transcript Expression Profiling.Bioinformatics 27, no. 13:I383-I391.PNNL-SA-77408.doi:10.1093/bioinformatics/btr247