Recent advances in experimental methods have provided sufficient data to consider systems as large networks of interconnected components. High-throughput determination of protein-protein interaction networks has led to the observation that topological bottlenecks, that is proteins defined by high centrality in the network, are enriched in proteins with systems-level phenotypes such as essentiality. Global transcriptional profiling by microarray analysis has been used extensively to characterize systems, for example, cellular response to environmental conditions and genetic mutations. These transcriptomic datasets have been used to infer regulatory and functional relationship networks based on co-regulation. We use the context likelihood of relatedness (CLR) method to infer networks from two datasets gathered from the pathogen Salmonella typhimurium; one under a range of environmental culture conditions and the other from deletions of 15 regulators found to be essential in virulence. Bottleneck nodes were identified from these inferred networks and we show that these nodes are significantly more likely to be essential for virulence than their non-bottleneck counterparts. A network generated using Pearson correlation did not display this behavior. Overall this study demonstrates that topology of networks inferred from global transcriptional profiles provides information about the systems-level roles of bottleneck genes. Analysis of the differences between the two CLR-derived networks suggests that the bottleneck nodes are either mediators of transitions between system states or sentinels that reflect the dynamics of these transitions.
Revised: March 18, 2009 |
Published: February 1, 2009
Citation
McDermott J.E., R.C. Taylor, H. Yoon, and F. Heffron. 2009.Bottlenecks and Hubs in Inferred Networks Are Important for Virulence in Salmonella typhimurium.Journal of Computational Biology 16, no. 2:169-180.PNNL-SA-61800.doi:10.1089/cmb.2008.04TT