This study evaluates the comparative performance of spatiotemporal fusion and time-series fitting methods for constructing high-spatiotemporal-resolution remote sensing time-series data. Due to in-class similarity of fusion methods and fitting methods, we employ the Fit-FC (Fitting, spatial Filtering, and residual Compensation) model as a representative fusion method and the linear harmonic fitting model as a representative fitting method. Both Fit-FC and the linear harmonic fitting are widely used for high-spatiotemporal-resolution time-series data construction, and we modify the original Fit-FC model to enable automatic time-series fusion. To ensure data representativeness, we use 3 years (2019–2021) of Harmonized Landsat and Sentinel-2 surface reflectance datasets and Terra MCD43A4 products. Eight experimental regions are selected worldwide to guarantee generalization of the comparative performance between fusion and fitting methods, covering diverse land-use types (cropland, developed land, forest, and grassland) and varying climatological conditions. Time-series of NDVI and surface reflectance are analyzed under both actual observations and simulated data-missing scenarios. The constructed time-series data reveals that (1) the modified Fit-FC and linear harmonic fitting model achieve excellent performance in constructing high-resolution time-series images; (2) the fusion method outperforms the fitting method in constructing time-series of NDVI and surface reflectance images in cropland-, forest-, and grassland-dominated regions; (3) both methods achieve comparable performance in developed-dominated regions; (4) the fusion method is more robust to missing data, and better captures abrupt phenological transitions under conditions of continuous missing data; (5) the fitting method is computationally more efficient, making it suitable for large-scale time-series image reconstruction. This study provides valuable insights for selecting optimal strategies to generate high-resolution time-series images across diverse application scenarios and lays a foundation for extensions to other vegetation indices or land surface variables.
Published: April 23, 2025
Citation
Tang J., V. Bento, D. Hao, Y. Zeng, P. Guo, Y. Chen, and Q. Wang, et al. 2025.Assessing methods in fusion and fitting for time series construction in remote sensing-based earth observations.GIScience & Remote Sensing 62, no. 1:2486190.PNNL-SA-193270.doi:10.1080/15481603.2025.2486190